Maneuvering Target Tracking in the Presence of Glint

I. Bilik, J. Tabrikian
{"title":"Maneuvering Target Tracking in the Presence of Glint","authors":"I. Bilik, J. Tabrikian","doi":"10.1109/EEEI.2006.321081","DOIUrl":null,"url":null,"abstract":"The problem of maneuvering target tracking in the presence of glint noise is addressed in this paper. The main challenge in this problem stems from its nonlinearity and non-Gaussianity. In this work, the nonlinear Gaussian mixture Kalman filter (NL-GMKF) is applied to the problem of maneuvering target tracking in the presence of glint. The algorithm is based on the Gaussian mixture model for the posterior state vector distribution. The tracking performance of the NL-GMKF is evaluated and compared to the interacting multiple modeling (IMM) with extended Kalman filter (EKF), particle filter (PF) and the EKF. It is shown that the NL-GMKF outperforms other tested methods.","PeriodicalId":142814,"journal":{"name":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEI.2006.321081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of maneuvering target tracking in the presence of glint noise is addressed in this paper. The main challenge in this problem stems from its nonlinearity and non-Gaussianity. In this work, the nonlinear Gaussian mixture Kalman filter (NL-GMKF) is applied to the problem of maneuvering target tracking in the presence of glint. The algorithm is based on the Gaussian mixture model for the posterior state vector distribution. The tracking performance of the NL-GMKF is evaluated and compared to the interacting multiple modeling (IMM) with extended Kalman filter (EKF), particle filter (PF) and the EKF. It is shown that the NL-GMKF outperforms other tested methods.
闪烁存在下机动目标跟踪
研究了存在闪烁噪声的机动目标跟踪问题。该问题的主要挑战在于它的非线性和非高斯性。本文将非线性高斯混合卡尔曼滤波(NL-GMKF)应用于存在闪烁的机动目标跟踪问题。该算法基于后验状态向量分布的高斯混合模型。对NL-GMKF的跟踪性能进行了评价,并与扩展卡尔曼滤波(EKF)、粒子滤波(PF)和EKF的交互多重建模(IMM)进行了比较。结果表明,NL-GMKF算法优于其他测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信