Tumor extraction and elimination of pectoral muscle based on hidden Markov and region growing: Applied based MIAS

Soukaina El Idrissi El Kaitouni, A. Abbad, H. Tairi
{"title":"Tumor extraction and elimination of pectoral muscle based on hidden Markov and region growing: Applied based MIAS","authors":"Soukaina El Idrissi El Kaitouni, A. Abbad, H. Tairi","doi":"10.1109/ATSIP.2017.8075583","DOIUrl":null,"url":null,"abstract":"In this article, we propose an automatic method for the detection and extraction of the tumor on mammogram images. Most methods of detection of a tumor require the extraction of a large number of texture features from multiple calculations. The study first examines a technique of preprocessing images to obtain the Otsu thresholding method to eliminate items that do not belong in. After performing the thresholding, we estimate the number of base classes of technical LBP (Local Binary Pattern). To automate the initialization task, the classification proposed by applying dynamic k-means and improve the classes obtained by the method of Markov. Then we calculate the correlation between these classes and the original image, we deduce the class that contains the tumor and muscle pectoral. Finally, it uses the method of growing the region to eliminate pectoral muscle. The result obtained by this approach shows the quality and accuracy of extracting parts of the tumor compared to existing approaches in the literature.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we propose an automatic method for the detection and extraction of the tumor on mammogram images. Most methods of detection of a tumor require the extraction of a large number of texture features from multiple calculations. The study first examines a technique of preprocessing images to obtain the Otsu thresholding method to eliminate items that do not belong in. After performing the thresholding, we estimate the number of base classes of technical LBP (Local Binary Pattern). To automate the initialization task, the classification proposed by applying dynamic k-means and improve the classes obtained by the method of Markov. Then we calculate the correlation between these classes and the original image, we deduce the class that contains the tumor and muscle pectoral. Finally, it uses the method of growing the region to eliminate pectoral muscle. The result obtained by this approach shows the quality and accuracy of extracting parts of the tumor compared to existing approaches in the literature.
基于隐马尔可夫和区域生长的胸肌肿瘤提取与消除:基于MIAS的应用
在本文中,我们提出了一种自动检测和提取乳房x线照片上肿瘤的方法。大多数检测肿瘤的方法需要从多次计算中提取大量的纹理特征。本研究首先探讨了一种预处理图像的技术,以获得Otsu阈值法来消除不属于的项目。在执行阈值分割后,我们估计了技术LBP(局部二值模式)的基类数量。为了实现初始化任务的自动化,提出了采用动态k-means的分类方法,并对马尔可夫方法得到的分类进行了改进。然后我们计算这些类别与原始图像之间的相关性,我们推断出包含肿瘤和胸肌的类别。最后,它使用生长区域的方法来消除胸肌。与文献中已有的方法相比,该方法获得的结果显示了肿瘤部分提取的质量和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信