An Electroencephalogram Based Detection of Hook and Span Hand Gestures

S. Shilaskar, Shreyas Talwekar, S. Bhatlawande, Sumitsaurabh Singh, R. Jalnekar
{"title":"An Electroencephalogram Based Detection of Hook and Span Hand Gestures","authors":"S. Shilaskar, Shreyas Talwekar, S. Bhatlawande, Sumitsaurabh Singh, R. Jalnekar","doi":"10.1109/PuneCon55413.2022.10014983","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interfaces (BCI) make use of Electroencephalogram (EEG) signals to classify limb movements and other motor activities in various biomedical applications. This paper presents an EEG-based system to distinguish span and hook hand gestures. The proposed model consists of various signal processing techniques to extract features of interest and machine learning-based classification algorithms. We have extracted features based on statistical parameters calculated from the EEG readings. Fast Fourier Transform (FFT) along with the Windowing technique is implemented. 4 different classifying models namely Support Vector Machine (SVM), Adaboost, Decision Tree, and Random Forest, have been compared. The proposed method accurately classifies hook and span-hand gestures. The Random Forest classifier achieved the highest accuracy of 78.62% followed by Decision Tree and Adaboost.","PeriodicalId":258640,"journal":{"name":"2022 IEEE Pune Section International Conference (PuneCon)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Pune Section International Conference (PuneCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PuneCon55413.2022.10014983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-Computer Interfaces (BCI) make use of Electroencephalogram (EEG) signals to classify limb movements and other motor activities in various biomedical applications. This paper presents an EEG-based system to distinguish span and hook hand gestures. The proposed model consists of various signal processing techniques to extract features of interest and machine learning-based classification algorithms. We have extracted features based on statistical parameters calculated from the EEG readings. Fast Fourier Transform (FFT) along with the Windowing technique is implemented. 4 different classifying models namely Support Vector Machine (SVM), Adaboost, Decision Tree, and Random Forest, have been compared. The proposed method accurately classifies hook and span-hand gestures. The Random Forest classifier achieved the highest accuracy of 78.62% followed by Decision Tree and Adaboost.
基于脑电图的钩形和跨距手势检测
脑机接口(BCI)在各种生物医学应用中利用脑电图(EEG)信号对肢体运动和其他运动活动进行分类。本文提出了一种基于脑电图的跨距和钩形手势识别系统。该模型由各种信号处理技术和基于机器学习的分类算法组成,以提取感兴趣的特征。我们根据脑电图读数计算的统计参数提取特征。实现了快速傅里叶变换(FFT)和加窗技术。比较了支持向量机(SVM)、Adaboost、决策树(Decision Tree)和随机森林(Random Forest) 4种不同的分类模型。该方法对勾手和跨手手势进行了准确的分类。随机森林分类器的准确率最高,为78.62%,其次是决策树和Adaboost。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信