A fast VQ codebook design algorithm for a large number of data

M. Nakai, H. Shimodaira, Masayuki Kimura
{"title":"A fast VQ codebook design algorithm for a large number of data","authors":"M. Nakai, H. Shimodaira, Masayuki Kimura","doi":"10.1109/ICASSP.1992.225960","DOIUrl":null,"url":null,"abstract":"The authors point out that the LBG algorithm (see Y. Linde et al., (1980)) requires a lot of computation as the training vectors increase, and proposes a fast VQ (vector quantization) algorithm for a large amount of training data. This algorithm consists of three steps: first, divide training vectors into small groups; second, quantize each group into a few codewords by the LBG algorithm; finally, construct a codebook by clustering these codewords using the LBG algorithm again. The authors also report they can reduce the distortion error of the algorithm by adapting an effective data-dividing method. In experiments of quantizing 17500 training vectors into 512 codewords, this algorithm requires only 1/6 computation time compared with the conventional algorithm, while the increase of distortion is only 0.5 dB.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.225960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The authors point out that the LBG algorithm (see Y. Linde et al., (1980)) requires a lot of computation as the training vectors increase, and proposes a fast VQ (vector quantization) algorithm for a large amount of training data. This algorithm consists of three steps: first, divide training vectors into small groups; second, quantize each group into a few codewords by the LBG algorithm; finally, construct a codebook by clustering these codewords using the LBG algorithm again. The authors also report they can reduce the distortion error of the algorithm by adapting an effective data-dividing method. In experiments of quantizing 17500 training vectors into 512 codewords, this algorithm requires only 1/6 computation time compared with the conventional algorithm, while the increase of distortion is only 0.5 dB.<>
一种针对大数据量的快速VQ码本设计算法
作者指出LBG算法(参见Y. Linde et al.,(1980))随着训练向量的增加需要大量的计算量,并针对大量的训练数据提出了一种快速的VQ(矢量量化)算法。该算法包括三个步骤:首先,将训练向量分成小组;其次,通过LBG算法将每一组量化为几个码字;最后,再次使用LBG算法对这些码字进行聚类,构造一个码本。通过采用一种有效的数据分割方法,可以减小算法的失真误差。在将17500个训练向量量化为512个码字的实验中,与传统算法相比,该算法只需要1/6的计算时间,而失真增加仅为0.5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信