Upper bound for palindromic and factor complexity of rich words

Josef Rukavicka
{"title":"Upper bound for palindromic and factor complexity of rich words","authors":"Josef Rukavicka","doi":"10.1051/ITA/2020008","DOIUrl":null,"url":null,"abstract":"A finite word w of length n contains at most n + 1 distinct palindromic factors. If the bound n + 1 is attained, the word w is called rich. An infinite word w is called rich if every finite factor of w is rich.\n\nLet w be a word (finite or infinite) over an alphabet with q > 1 letters, let Facw(n) be the set of factors of length n of the word w, and let Palw(n) ⊆ Facw(n) be the set of palindromic factors of length n of the word w.\n\nWe present several upper bounds for |Facw(n)| and |Palw(n)|, where w is a rich word. Let δ = [see formula in PDF]. In particular we show that\n\n|Facw(n)| ≤ (4q2n)δ ln 2n+2.\n\nIn 2007, Baláži, Masáková, and Pelantová showed that\n\n|Palw(n)|+|Palw(n+1)| ≤ |Facw(n+1)|-|Facw(n)|+2,\n\nwhere w is an infinite word whose set of factors is closed under reversal. We prove this inequality for every finite word v with |v| ≥ n + 1 and v(n + 1) closed under reversal.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ITA/2020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A finite word w of length n contains at most n + 1 distinct palindromic factors. If the bound n + 1 is attained, the word w is called rich. An infinite word w is called rich if every finite factor of w is rich. Let w be a word (finite or infinite) over an alphabet with q > 1 letters, let Facw(n) be the set of factors of length n of the word w, and let Palw(n) ⊆ Facw(n) be the set of palindromic factors of length n of the word w. We present several upper bounds for |Facw(n)| and |Palw(n)|, where w is a rich word. Let δ = [see formula in PDF]. In particular we show that |Facw(n)| ≤ (4q2n)δ ln 2n+2. In 2007, Baláži, Masáková, and Pelantová showed that |Palw(n)|+|Palw(n+1)| ≤ |Facw(n+1)|-|Facw(n)|+2, where w is an infinite word whose set of factors is closed under reversal. We prove this inequality for every finite word v with |v| ≥ n + 1 and v(n + 1) closed under reversal.
丰富词的回文和因子复杂度上限
长度为n的有限单词w最多包含n + 1个不同的回文因子。如果达到了边界n + 1,则称w为富。如果w的每一个有限因子都是丰富的,那么一个无限的单词w就是丰富的。设w是q > 1个字母的字母表上的一个单词(有限或无限),设Facw(n)是单词w的长度为n的因子集,设Palw(n)是单词w的长度为n的回文因子集。我们给出了|Facw(n)|和|Palw(n)|的几个上界,其中w是一个富词。令δ =[见公式]。我们特别证明了|Facw(n)|≤(4q2n)δ ln 2n+2。2007年Baláži、Masáková和pelantov证明了|Palw(n)|+|Palw(n+1)|≤|Facw(n+1)|-|Facw(n)|+2,其中w是一个无限字,其因子集在反转下是封闭的。我们证明了这个不等式适用于每一个有限字v,其中|v|≥n + 1和v(n + 1)在反转下闭合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信