Increasing the Accuracy of Discriminative of Multinomial Bayesian Classifier in Text Classification

T. Mouratis, S. Kotsiantis
{"title":"Increasing the Accuracy of Discriminative of Multinomial Bayesian Classifier in Text Classification","authors":"T. Mouratis, S. Kotsiantis","doi":"10.1109/ICCIT.2009.13","DOIUrl":null,"url":null,"abstract":"Text Classification plays an important role in information extraction and summarization, text retrieval, and question-answering. The Discriminative Multinomial Naive Bayes classifier has been a focus of research in the field of text classification. This paper increases the accuracy of Discriminative Multinomial Bayesian Classifier with the usage of the feature selection technique that evaluates the worth of an attribute by computing the value of the chi-squared statistic with respect to the class. We performed a large-scale comparison on benchmark datasets with other state-of-the-art algorithms and the proposed methodology had greater accuracy in most cases.","PeriodicalId":112416,"journal":{"name":"2009 Fourth International Conference on Computer Sciences and Convergence Information Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Computer Sciences and Convergence Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Text Classification plays an important role in information extraction and summarization, text retrieval, and question-answering. The Discriminative Multinomial Naive Bayes classifier has been a focus of research in the field of text classification. This paper increases the accuracy of Discriminative Multinomial Bayesian Classifier with the usage of the feature selection technique that evaluates the worth of an attribute by computing the value of the chi-squared statistic with respect to the class. We performed a large-scale comparison on benchmark datasets with other state-of-the-art algorithms and the proposed methodology had greater accuracy in most cases.
提高多项贝叶斯分类器在文本分类中的判别准确率
文本分类在信息提取与总结、文本检索和问题回答等方面发挥着重要作用。判别多项式朴素贝叶斯分类器一直是文本分类领域的研究热点。本文利用特征选择技术,通过计算类的卡方统计量来评估属性的价值,从而提高判别多项贝叶斯分类器的准确性。我们对基准数据集与其他最先进的算法进行了大规模比较,并且所提出的方法在大多数情况下具有更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信