Infrared imagery super-resolution by using a generative adversarial network

Trong-An Bui, Pei-Jun Lee, Kuan-Min Lee, Walter Wang, Shiual-Hal Shiu
{"title":"Infrared imagery super-resolution by using a generative adversarial network","authors":"Trong-An Bui, Pei-Jun Lee, Kuan-Min Lee, Walter Wang, Shiual-Hal Shiu","doi":"10.1109/ICCE-TW52618.2021.9603172","DOIUrl":null,"url":null,"abstract":"The thermal camera often has a limited spatial resolution compared to the RGB camera with typically provides megapixels of resolution. This study presents a super-resolution architecture for infrared (IR) imagery base on a generative adversarial network. The up-sampling in this proposed network’s design generates a new super-resolution image by four times. Moreover, in this paper, generative network and discriminative models for IR images are presented. The small-object features in super-resolution IR images are shown in the simulation section with high quality.","PeriodicalId":141850,"journal":{"name":"2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW52618.2021.9603172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The thermal camera often has a limited spatial resolution compared to the RGB camera with typically provides megapixels of resolution. This study presents a super-resolution architecture for infrared (IR) imagery base on a generative adversarial network. The up-sampling in this proposed network’s design generates a new super-resolution image by four times. Moreover, in this paper, generative network and discriminative models for IR images are presented. The small-object features in super-resolution IR images are shown in the simulation section with high quality.
基于生成对抗网络的红外图像超分辨
与通常提供百万像素分辨率的RGB相机相比,热像仪通常具有有限的空间分辨率。提出了一种基于生成对抗网络的红外图像超分辨率架构。在这种网络设计中,上采样产生了一幅新的超分辨率图像,上采样的次数是原来的四倍。此外,本文还提出了红外图像的生成网络和判别模型。仿真部分高质量地显示了超分辨率红外图像中的小目标特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信