Game-theoretic semantics for non-distributive logics

Log. J. IGPL Pub Date : 2019-09-25 DOI:10.1093/JIGPAL/JZY079
C. Hartonas
{"title":"Game-theoretic semantics for non-distributive logics","authors":"C. Hartonas","doi":"10.1093/JIGPAL/JZY079","DOIUrl":null,"url":null,"abstract":"We introduce game-theoretic semantics for systems without the conveniences of either a De Morgan negation, or of distribution of conjunction over disjunction and conversely. Much of game playing rests on challenges issued by one player to the other to satisfy, or refute, a sentence, while forcing him/her to move to some other place in the game’s chessboard-like configuration. Correctness of the game-theoretic semantics is proven for both a training game, corresponding to Positive Lattice Logic and for more advanced games for the logics of lattices with weak negation and modal operators (Modal Lattice Logic).","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZY079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We introduce game-theoretic semantics for systems without the conveniences of either a De Morgan negation, or of distribution of conjunction over disjunction and conversely. Much of game playing rests on challenges issued by one player to the other to satisfy, or refute, a sentence, while forcing him/her to move to some other place in the game’s chessboard-like configuration. Correctness of the game-theoretic semantics is proven for both a training game, corresponding to Positive Lattice Logic and for more advanced games for the logics of lattices with weak negation and modal operators (Modal Lattice Logic).
非分配逻辑的博弈论语义
我们引入博弈论语义的系统,既没有德摩根否定的便利,也没有合取比析取或相反的分布。许多游戏玩法都是基于一名玩家向另一名玩家发出挑战,以满足或反驳一个句子,同时迫使他/她移动到游戏棋盘般的配置中的其他位置。博弈论语义的正确性既证明了训练博弈,对应于正格逻辑,也证明了具有弱否定和模态算子的格逻辑(模态格逻辑)的更高级博弈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信