Application of mismatched Cellular Nonlinear Networks for Physical Cryptography

G. Csaba, X. Ju, Zhiqian Ma, Qingqing Chen, W. Porod, J. Schmidhuber, Ulf Schlichtmann, P. Lugli, U. Ruhrmair
{"title":"Application of mismatched Cellular Nonlinear Networks for Physical Cryptography","authors":"G. Csaba, X. Ju, Zhiqian Ma, Qingqing Chen, W. Porod, J. Schmidhuber, Ulf Schlichtmann, P. Lugli, U. Ruhrmair","doi":"10.1109/CNNA.2010.5430303","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of Cellular Non-Linear Networks (CNNs) as physical uncloneable functions (PUFs). We argue that analog circuits offer higher security than existing digital PUFs and that the CNN paradigm allows us to build large, unclonable, and scalable analog PUFs, which still show a stable and repeatable input-output behavior. CNNs are dynamical arrays of locally-interconnected cells, with a cell dynamics that depends upon the interconnection strengths to their neighbors. They can be designed to evolve in time according to partial differential equations. If this If this equation describes a physical phenomenon, then the CNN can simulate a complex physical system on-chip. This can be exploited to create electrical PUFs with high relevant structural information content. To illustrate our paradigm at work, we design a circuit that directly emulates nonlinear wave propagation phenomena in a random media. It effectively translates the complexity of optical PUFs into electrical circuits.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

This paper proposes the use of Cellular Non-Linear Networks (CNNs) as physical uncloneable functions (PUFs). We argue that analog circuits offer higher security than existing digital PUFs and that the CNN paradigm allows us to build large, unclonable, and scalable analog PUFs, which still show a stable and repeatable input-output behavior. CNNs are dynamical arrays of locally-interconnected cells, with a cell dynamics that depends upon the interconnection strengths to their neighbors. They can be designed to evolve in time according to partial differential equations. If this If this equation describes a physical phenomenon, then the CNN can simulate a complex physical system on-chip. This can be exploited to create electrical PUFs with high relevant structural information content. To illustrate our paradigm at work, we design a circuit that directly emulates nonlinear wave propagation phenomena in a random media. It effectively translates the complexity of optical PUFs into electrical circuits.
错配元胞非线性网络在物理密码学中的应用
本文提出使用细胞非线性网络(cnn)作为物理不可克隆函数(puf)。我们认为模拟电路比现有的数字puf提供更高的安全性,并且CNN范式允许我们构建大型,不可克隆和可扩展的模拟puf,这些puf仍然显示出稳定和可重复的输入输出行为。cnn是由局部相互连接的单元组成的动态阵列,其单元动态取决于与相邻单元的相互连接强度。它们可以被设计成根据偏微分方程随时间演化。如果这个方程描述了一种物理现象,那么CNN就可以在片上模拟一个复杂的物理系统。这可以用于创建具有高相关结构信息内容的电气puf。为了说明我们在工作中的范例,我们设计了一个电路,直接模拟随机介质中的非线性波传播现象。它有效地将光学puf的复杂性转化为电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信