SiWa

Tianyue Zheng, Zhe Chen, Jun Luo, Lin Ke, Chao Zhao, Yaowen Yang
{"title":"SiWa","authors":"Tianyue Zheng, Zhe Chen, Jun Luo, Lin Ke, Chao Zhao, Yaowen Yang","doi":"10.1145/3447993.3483258","DOIUrl":null,"url":null,"abstract":"Being able to see into walls is crucial for diagnostics of building health; it enables inspections of wall structure without undermining the structural integrity. However, existing sensing devices do not seem to offer a full capability in mapping the in-wall structure while identifying their status (e.g., seepage and corrosion). In this paper, we design and implement SiWa as a low-cost and portable system for wall inspections. Built upon a customized IR-UWB radar, SiWa scans a wall as a user swipes its probe along the wall surface; it then analyzes the reflected signals to synthesize an image and also to identify the material status. Although conventional schemes exist to handle these problems individually, they require troublesome calibrations that largely prevent them from practical adoptions. To this end, we equip SiWa with a deep learning pipeline to parse the rich sensory data. With innovative construction and training, the deep learning modules perform structural imaging and the subsequent analysis on material status, without the need for repetitive parameter tuning and calibrations. We build SiWa as a prototype and evaluate its performance via extensive experiments and field studies; results evidently confirm that SiWa accurately maps in-wall structures, identifies their materials, and detects possible defects, suggesting a promising solution for diagnosing building health with minimal effort and cost.","PeriodicalId":177431,"journal":{"name":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447993.3483258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Being able to see into walls is crucial for diagnostics of building health; it enables inspections of wall structure without undermining the structural integrity. However, existing sensing devices do not seem to offer a full capability in mapping the in-wall structure while identifying their status (e.g., seepage and corrosion). In this paper, we design and implement SiWa as a low-cost and portable system for wall inspections. Built upon a customized IR-UWB radar, SiWa scans a wall as a user swipes its probe along the wall surface; it then analyzes the reflected signals to synthesize an image and also to identify the material status. Although conventional schemes exist to handle these problems individually, they require troublesome calibrations that largely prevent them from practical adoptions. To this end, we equip SiWa with a deep learning pipeline to parse the rich sensory data. With innovative construction and training, the deep learning modules perform structural imaging and the subsequent analysis on material status, without the need for repetitive parameter tuning and calibrations. We build SiWa as a prototype and evaluate its performance via extensive experiments and field studies; results evidently confirm that SiWa accurately maps in-wall structures, identifies their materials, and detects possible defects, suggesting a promising solution for diagnosing building health with minimal effort and cost.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信