Adaptive pre-equalization using neural-like algorithm

K. Al-Mashouq, A. Al-Obaid, S. Alshebeili
{"title":"Adaptive pre-equalization using neural-like algorithm","authors":"K. Al-Mashouq, A. Al-Obaid, S. Alshebeili","doi":"10.1109/DSPWS.1996.555556","DOIUrl":null,"url":null,"abstract":"For severe intersymbol-interference (ISI) channels, a linear post-equalizer at the receiver causes noise enhancement which degrades the performance. To avoid such a problem we propose the use of adaptive pre-equalization at the transmitter. Based on the back-propagation algorithm used for multi-layer neural networks, we derive an adaptive algorithm to train the pre-equalizer. The simulation example presented shows that substantial power gain can be achieved with this adaptation technique. It is also shown how to extend the training algorithm in order to adapt the pre-equalizer and post-equalizer simultaneously.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For severe intersymbol-interference (ISI) channels, a linear post-equalizer at the receiver causes noise enhancement which degrades the performance. To avoid such a problem we propose the use of adaptive pre-equalization at the transmitter. Based on the back-propagation algorithm used for multi-layer neural networks, we derive an adaptive algorithm to train the pre-equalizer. The simulation example presented shows that substantial power gain can be achieved with this adaptation technique. It is also shown how to extend the training algorithm in order to adapt the pre-equalizer and post-equalizer simultaneously.
采用类神经算法的自适应预均衡
对于严重的符号间干扰(ISI)信道,接收器上的线性后均衡器会导致噪声增强,从而降低性能。为了避免这样的问题,我们建议在发射机上使用自适应预均衡。在多层神经网络反向传播算法的基础上,提出了一种自适应训练预均衡器的算法。仿真结果表明,采用该自适应技术可以获得较大的功率增益。本文还展示了如何扩展训练算法以同时适应前置均衡器和后均衡器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信