Real-coded genetic algorithm in superquadric fitting

Weiwei Xing, Weibin Liu, Baozong Yuan
{"title":"Real-coded genetic algorithm in superquadric fitting","authors":"Weiwei Xing, Weibin Liu, Baozong Yuan","doi":"10.1109/ICOSP.2002.1181193","DOIUrl":null,"url":null,"abstract":"Superquadric parameter extraction is essential for superquadric-based reconstruction from 2D images and 3D data, but most of the search algorithms for superquadric parameter extraction are suboptimal and they are susceptible to being trapped into local optima. In this paper, we propose a search based on a real-coded genetic algorithm (RCGA) for parameter extraction, which applies the genetic algorithm to superquadric-based fitting computation. Numerical fitting experiments for comparison of GA parameters and genetic operators are carried out. Results obtained show the efficiency, robustness and accuracy of the RCGA-based search algorithm, which not only solves the problem of being trapped into local optima, but also performs quickly and reliably for superquadric fitting.","PeriodicalId":159807,"journal":{"name":"6th International Conference on Signal Processing, 2002.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Signal Processing, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2002.1181193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Superquadric parameter extraction is essential for superquadric-based reconstruction from 2D images and 3D data, but most of the search algorithms for superquadric parameter extraction are suboptimal and they are susceptible to being trapped into local optima. In this paper, we propose a search based on a real-coded genetic algorithm (RCGA) for parameter extraction, which applies the genetic algorithm to superquadric-based fitting computation. Numerical fitting experiments for comparison of GA parameters and genetic operators are carried out. Results obtained show the efficiency, robustness and accuracy of the RCGA-based search algorithm, which not only solves the problem of being trapped into local optima, but also performs quickly and reliably for superquadric fitting.
超二次拟合中的实编码遗传算法
超二次参数提取是基于二维图像和三维数据的超二次重建的关键,但大多数超二次参数提取的搜索算法都是次优的,容易陷入局部最优。本文提出了一种基于实数编码遗传算法(RCGA)的参数提取搜索方法,将遗传算法应用于超二次拟合计算。为比较遗传算法参数和遗传算子,进行了数值拟合实验。结果表明,基于rcga的搜索算法不仅解决了陷入局部最优的问题,而且能够快速可靠地进行超二次拟合,具有较高的效率、鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信