Model Predictive Control for an Active Magnetic Bearing System

A. Morsi, S. Ahmed, Abdelfatah M. Mohamed, H. S. Abbas
{"title":"Model Predictive Control for an Active Magnetic Bearing System","authors":"A. Morsi, S. Ahmed, Abdelfatah M. Mohamed, H. S. Abbas","doi":"10.1109/ICIEA49774.2020.9101934","DOIUrl":null,"url":null,"abstract":"Active magnetic bearing (AMB) systems have attracted much attention in the high speed rotating machinery industry. This paper presents an application of discrete-time model predictive control (MPC) subject to input/states constraints to control an AMB system based on linear time-invariant (LTI) model. The main control objectives are to levitate the rotor shaft of the AMB system while tracking a reference trajectory and to reject possible disturbances without violating the input and state constraints. A nonlinear (NL) model of the AMB system is considered; at each sampling instant, a finite horizon MPC problem is solved to compute the optimal control input. The performance and the efficiency of the proposed MPC is validated via simulation and comparison with another classical PID controller.","PeriodicalId":306461,"journal":{"name":"2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA49774.2020.9101934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Active magnetic bearing (AMB) systems have attracted much attention in the high speed rotating machinery industry. This paper presents an application of discrete-time model predictive control (MPC) subject to input/states constraints to control an AMB system based on linear time-invariant (LTI) model. The main control objectives are to levitate the rotor shaft of the AMB system while tracking a reference trajectory and to reject possible disturbances without violating the input and state constraints. A nonlinear (NL) model of the AMB system is considered; at each sampling instant, a finite horizon MPC problem is solved to compute the optimal control input. The performance and the efficiency of the proposed MPC is validated via simulation and comparison with another classical PID controller.
主动磁轴承系统的模型预测控制
主动磁轴承(AMB)系统在高速旋转机械行业受到广泛关注。本文提出了基于输入/状态约束的离散时间模型预测控制(MPC)在基于线性时不变(LTI)模型的AMB系统中的应用。主要控制目标是在跟踪参考轨迹的同时使转子轴悬浮,并在不违反输入和状态约束的情况下抑制可能的干扰。考虑了AMB系统的非线性模型;在每个采样时刻,求解有限视界MPC问题以计算最优控制输入。通过仿真和与另一种经典PID控制器的比较,验证了所提MPC的性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信