Pneumonia Detection using Dense Convolutional Network (DenseNet) Architecture

Maria Susan Anggreainy, Ajeng Wulandari, Abdullah M. Illyasu
{"title":"Pneumonia Detection using Dense Convolutional Network (DenseNet) Architecture","authors":"Maria Susan Anggreainy, Ajeng Wulandari, Abdullah M. Illyasu","doi":"10.1109/ISRITI54043.2021.9702803","DOIUrl":null,"url":null,"abstract":"Pneumonia is a dangerous disease that attacks the respiratory system, causing pain in the chest when breathing. The disease killed more than two million people in one year in 2017. Photo the resulting chest X-ray will be checked manually and require proper lighting by a doctor to get the type of pneumonia. Therefore, we need a method to automatically classify pneumonia of the Chest X-ray image. Pneumonia classification systems have been developed but still, produce low accuracy. This research developed a classification system using DenseNet and compared its accuracy with previous studies using ResNet. The results show a 9% performance using DenseNet is better than using ResNet.","PeriodicalId":156265,"journal":{"name":"2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRITI54043.2021.9702803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Pneumonia is a dangerous disease that attacks the respiratory system, causing pain in the chest when breathing. The disease killed more than two million people in one year in 2017. Photo the resulting chest X-ray will be checked manually and require proper lighting by a doctor to get the type of pneumonia. Therefore, we need a method to automatically classify pneumonia of the Chest X-ray image. Pneumonia classification systems have been developed but still, produce low accuracy. This research developed a classification system using DenseNet and compared its accuracy with previous studies using ResNet. The results show a 9% performance using DenseNet is better than using ResNet.
基于密集卷积网络(DenseNet)架构的肺炎检测
肺炎是一种攻击呼吸系统的危险疾病,呼吸时引起胸部疼痛。2017年,该疾病在一年内导致200多万人死亡。拍摄后的胸部x光片将由医生手动检查,并需要适当的照明来确定肺炎的类型。因此,我们需要一种对胸部x线图像的肺炎进行自动分类的方法。肺炎分类系统已经发展,但仍然产生较低的准确性。本研究开发了一个基于DenseNet的分类系统,并将其准确率与先前基于ResNet的研究进行了比较。结果表明,使用DenseNet的性能比使用ResNet的性能好9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信