A Filter Correlation Method for Feature Selection

Hanen Hosni, F. Mhamdi
{"title":"A Filter Correlation Method for Feature Selection","authors":"Hanen Hosni, F. Mhamdi","doi":"10.1109/DEXA.2014.28","DOIUrl":null,"url":null,"abstract":"Biological data is undergoing exponential growth in volume and complexity. Often, the selection of biological features is a crucial step that aims to defy the curse of dimensionality to improve prediction performance in classification systems, facilitate viewing, understanding and analyzing data. In this paper we present an adaptation of the Fast Correlation Based Filter algorithm (FCBF) whose aims is to identify relevant, not redundant features to improve the capacity of prediction and reduce the search space.","PeriodicalId":291899,"journal":{"name":"2014 25th International Workshop on Database and Expert Systems Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 25th International Workshop on Database and Expert Systems Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2014.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Biological data is undergoing exponential growth in volume and complexity. Often, the selection of biological features is a crucial step that aims to defy the curse of dimensionality to improve prediction performance in classification systems, facilitate viewing, understanding and analyzing data. In this paper we present an adaptation of the Fast Correlation Based Filter algorithm (FCBF) whose aims is to identify relevant, not redundant features to improve the capacity of prediction and reduce the search space.
一种用于特征选择的滤波器相关方法
生物数据的数量和复杂性正在呈指数级增长。通常,生物特征的选择是一个关键步骤,旨在克服维度的诅咒,提高分类系统的预测性能,方便查看,理解和分析数据。在本文中,我们提出了一种基于快速相关滤波算法(FCBF)的改进,其目的是识别相关的、不冗余的特征,以提高预测能力并减少搜索空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信