F. Romaniuk, V. Rumiantsev, Y. Rumiantsev, A. Dziaruhina, P. Klimkovich
{"title":"Principles for Implementation of Digital Power Direction Control in Microprocessor Current Protections","authors":"F. Romaniuk, V. Rumiantsev, Y. Rumiantsev, A. Dziaruhina, P. Klimkovich","doi":"10.21122/2227-1031-2023-22-4-317-325","DOIUrl":null,"url":null,"abstract":"In the existing microprocessor-based directional current protection lines from phase-to-phase short circuits, digital power direction elements are used, which, as a rule, are switched on at full currents and voltage according to the so-called 90-degree pattern. With this switching scheme, a “dead” zone appears only in case of three-phase short circuits close to the protection installation site, which make up a small fraction of all possible types of such damage. Nevertheless, its presence is a significant drawback of the power direction organs. The principles of organ execution based on digital operations with orthogonal components of input voltages and currents have been considered. The result of the functioning of the power direction body is reduced to the development of an information sign equal to: one – with the direct direction of power; minus one – when it is in the opposite direction. To eliminate the “dead” zone, the work of the organ is organized using the voltage “memory”. In order to obtain the required duration of the “memory”, frequency compensation is implemented. The study of the effectiveness of the decisions made, as well as the behavior of the power direction control in normal and emergency modes, has been carried out by the method of a computational experiment. In the MATLAB-Simulink-SimPowerSystems dynamic simulation system, models of the electrical system and a digital power direction control have been developed. The results of the research have shown that the joint use of the existing and proposed principles for the implementation of a digital power direction control ensures an increase in its technical perfection and eliminates the “dead” zone while maintaining its stable operation for an arbitrarily long period of time.","PeriodicalId":297325,"journal":{"name":"Science & Technique","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2227-1031-2023-22-4-317-325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the existing microprocessor-based directional current protection lines from phase-to-phase short circuits, digital power direction elements are used, which, as a rule, are switched on at full currents and voltage according to the so-called 90-degree pattern. With this switching scheme, a “dead” zone appears only in case of three-phase short circuits close to the protection installation site, which make up a small fraction of all possible types of such damage. Nevertheless, its presence is a significant drawback of the power direction organs. The principles of organ execution based on digital operations with orthogonal components of input voltages and currents have been considered. The result of the functioning of the power direction body is reduced to the development of an information sign equal to: one – with the direct direction of power; minus one – when it is in the opposite direction. To eliminate the “dead” zone, the work of the organ is organized using the voltage “memory”. In order to obtain the required duration of the “memory”, frequency compensation is implemented. The study of the effectiveness of the decisions made, as well as the behavior of the power direction control in normal and emergency modes, has been carried out by the method of a computational experiment. In the MATLAB-Simulink-SimPowerSystems dynamic simulation system, models of the electrical system and a digital power direction control have been developed. The results of the research have shown that the joint use of the existing and proposed principles for the implementation of a digital power direction control ensures an increase in its technical perfection and eliminates the “dead” zone while maintaining its stable operation for an arbitrarily long period of time.