Design of Resource Recommendation Model for Personalized Learning in the Era of Big Data

Hao Li-qiang, Liu Quan
{"title":"Design of Resource Recommendation Model for Personalized Learning in the Era of Big Data","authors":"Hao Li-qiang, Liu Quan","doi":"10.1145/3377672.3378054","DOIUrl":null,"url":null,"abstract":"This paper proposes a personalized learning resource recommendation model based on big data. The design of the model consists of data storage, data analysis, resource matching, and the resource recommendation. In order to provide a suitable resource, data analysis is a more critical procedure that involves the analyses of basic information, learning style, learning status, learning behavior, and learning interest, which can be successfully analyzed by means of kafka and flume. Through an experiment, it shows that personalized resource recommendation platform really plays a positive role in improving students learning.","PeriodicalId":264239,"journal":{"name":"Proceedings of the 2019 Annual Meeting on Management Engineering","volume":"329 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 Annual Meeting on Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377672.3378054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a personalized learning resource recommendation model based on big data. The design of the model consists of data storage, data analysis, resource matching, and the resource recommendation. In order to provide a suitable resource, data analysis is a more critical procedure that involves the analyses of basic information, learning style, learning status, learning behavior, and learning interest, which can be successfully analyzed by means of kafka and flume. Through an experiment, it shows that personalized resource recommendation platform really plays a positive role in improving students learning.
大数据时代个性化学习资源推荐模型设计
提出了一种基于大数据的个性化学习资源推荐模型。模型的设计包括数据存储、数据分析、资源匹配和资源推荐。为了提供合适的资源,数据分析是一个更关键的过程,涉及到对基本信息、学习风格、学习状态、学习行为和学习兴趣的分析,通过kafka和flume可以成功地分析。通过实验表明,个性化资源推荐平台确实对学生的学习起到了积极的促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信