{"title":"RETROFITTING POTENTIALS IN AIRCRAFT STRUCTURAL HEALTH MONITORING—A VALUE OF INFORMATION ANALYSIS","authors":"Kai-Daniel Büchter, L. Koops","doi":"10.12783/shm2021/36238","DOIUrl":null,"url":null,"abstract":"Structural Health Monitoring (SHM) systems promise to improve cost efficiency in aircraft maintenance. Beyond the cost of developing and procuring SHM systems, however, a potentially adverse impact on aircraft performance may negatively affect operational cost. With this in mind, we use an SHM sensor-network model to derive optimal SHM configurations, considering instrumentation and fuel costs as well as saved inspection time, on individual structural component level. Based on Net Present Value theory, we find that retrofitting provides a 20-% benefit on fleet level over factory-only instrumentation, considering the increasing maintenance effort throughout aircraft life as well as variations in individual aircraft usage. We also show that a Value of Information analysis supports more gainful decisions regarding the optimal set of instrumented parts as well as retrofitting times, considering individual aircraft usage.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Structural Health Monitoring (SHM) systems promise to improve cost efficiency in aircraft maintenance. Beyond the cost of developing and procuring SHM systems, however, a potentially adverse impact on aircraft performance may negatively affect operational cost. With this in mind, we use an SHM sensor-network model to derive optimal SHM configurations, considering instrumentation and fuel costs as well as saved inspection time, on individual structural component level. Based on Net Present Value theory, we find that retrofitting provides a 20-% benefit on fleet level over factory-only instrumentation, considering the increasing maintenance effort throughout aircraft life as well as variations in individual aircraft usage. We also show that a Value of Information analysis supports more gainful decisions regarding the optimal set of instrumented parts as well as retrofitting times, considering individual aircraft usage.