A Novel Approach for Federated Learning with Non-IID Data

H. Nguyen, H.C. Warrier, Yogesh Gupta
{"title":"A Novel Approach for Federated Learning with Non-IID Data","authors":"H. Nguyen, H.C. Warrier, Yogesh Gupta","doi":"10.1109/ISCMI56532.2022.10068456","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is an emerging technique used to collaboratively train a global machine learning model while keeping the data localized on the user devices. The main obstacle to FL's practical implementation is the Non-Independent and Identical (Non-IID) data distribution across users, which slows convergence and degrades performance. To tackle this fundamental issue, we propose a method (called ComFed) that enhances the whole training process on both the client and server sides. The key idea of ComFed is to simultaneously utilize client-variance reduction techniques to facilitate server aggregation and global adaptive update techniques to accelerate learning. Our experiments show that ComFed can improve state-of-the-art algorithms dedicated to Non-IID data.","PeriodicalId":340397,"journal":{"name":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI56532.2022.10068456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning (FL) is an emerging technique used to collaboratively train a global machine learning model while keeping the data localized on the user devices. The main obstacle to FL's practical implementation is the Non-Independent and Identical (Non-IID) data distribution across users, which slows convergence and degrades performance. To tackle this fundamental issue, we propose a method (called ComFed) that enhances the whole training process on both the client and server sides. The key idea of ComFed is to simultaneously utilize client-variance reduction techniques to facilitate server aggregation and global adaptive update techniques to accelerate learning. Our experiments show that ComFed can improve state-of-the-art algorithms dedicated to Non-IID data.
一种基于非iid数据的联邦学习新方法
联邦学习(FL)是一种新兴技术,用于协作训练全局机器学习模型,同时保持数据在用户设备上的本地化。FL实际实现的主要障碍是跨用户的非独立和相同(Non-IID)数据分布,这会减慢收敛速度并降低性能。为了解决这个基本问题,我们提出了一种方法(称为ComFed),它可以在客户端和服务器端增强整个培训过程。ComFed的关键思想是同时利用客户端方差减少技术来促进服务器聚合和全局自适应更新技术来加速学习。我们的实验表明,ComFed可以改进专门用于非iid数据的最先进算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信