L1-Norm Principal-Component Analysis via Bit Flipping

Panos P. Markopoulos, S. Kundu, Shubham Chamadia, D. Pados
{"title":"L1-Norm Principal-Component Analysis via Bit Flipping","authors":"Panos P. Markopoulos, S. Kundu, Shubham Chamadia, D. Pados","doi":"10.1109/ICMLA.2016.0060","DOIUrl":null,"url":null,"abstract":"The K L1-norm Principal Components (L1-PCs) of a data matrix X Ε RD × N can be found optimally with cost O(2NK), in the general case, and O(Nrank(X)K - K + 1), when rankX is a constant with respect to N [1],[2]. Certainly, in real-world applications where N is large, even the latter polynomial cost is prohibitive. In this work, we present L1-BF: a novel, near-optimal algorithm that calculates the K L1-PCs of X with cost O (NDmin{N, D} + N2(K4 + DK2) + DNK3), comparable to that of standard (L2-norm) Principal-Component Analysis. Our numerical studies illustrate that the proposed algorithm attains optimality with very high frequency while, at the same time, it outperforms on the L1-PCA metric any counterpart of comparable computational cost. The outlier-resistance of the L1-PCs calculated by L1-BF is documented with experiments on dimensionality reduction and genomic data classification for disease diagnosis.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The K L1-norm Principal Components (L1-PCs) of a data matrix X Ε RD × N can be found optimally with cost O(2NK), in the general case, and O(Nrank(X)K - K + 1), when rankX is a constant with respect to N [1],[2]. Certainly, in real-world applications where N is large, even the latter polynomial cost is prohibitive. In this work, we present L1-BF: a novel, near-optimal algorithm that calculates the K L1-PCs of X with cost O (NDmin{N, D} + N2(K4 + DK2) + DNK3), comparable to that of standard (L2-norm) Principal-Component Analysis. Our numerical studies illustrate that the proposed algorithm attains optimality with very high frequency while, at the same time, it outperforms on the L1-PCA metric any counterpart of comparable computational cost. The outlier-resistance of the L1-PCs calculated by L1-BF is documented with experiments on dimensionality reduction and genomic data classification for disease diagnosis.
基于位翻转的l1范数主成分分析
数据矩阵X Ε RD × N的K个l1范数主成分(L1-PCs)可以在一般情况下以代价O(2NK)和O(Nrank(X)K - K + 1)最优地找到,当rankX是关于N[1],[2]的常数时。当然,在N很大的实际应用程序中,即使是后一个多项式的代价也是令人望而却步的。在这项工作中,我们提出了L1-BF:一种新颖的、接近最优的算法,它以O (NDmin{N, D} + N2(K4 + DK2) + DNK3)的代价计算X的K l1 - pc,与标准(l2 -范数)主成分分析相当。我们的数值研究表明,所提出的算法以非常高的频率达到最优性,同时,它在L1-PCA度量上优于任何类似计算成本的对应度量。利用L1-BF计算的L1-PCs的离群抗性,通过降维和基因组数据分类进行了疾病诊断实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信