{"title":"A Numerical Study on the Correlation between Joint Roughness and Hydraulic Characteristics","authors":"Seung-Joong Lee, Byung-ryeol Kim, Sung O. Choi","doi":"10.7474/TUS.2014.24.2.176","DOIUrl":null,"url":null,"abstract":"Roughness, aperture and filling material of rock joint are widely considered to affect the hydraulic characteristics of joint. Among these factors, in this study, the joint roughness was examined with artificial joint profiles generated by Monte Carlo simulating on the original profiles suggested by Barton and Choubey(1977). Original profiles and revised profiles were combined to establish flow channel models, in which the hydraulic characteristics were analyzed numerically on the basis of minimum aperture changes and flow channel shapes. Maximum flow rate was identified at the growing point of flow area after passing through minimum aperture generated by the two profiles, and it was resulted that maximum flow rate is inversely proportional to minimum aperture. Maximum flow rate per unit area showed different values because flow channel shapes and minimum aperture locations are different in each model. In flow channel, mechanical aperture showed approximately 1.07 ~ 3.00 times larger than hydraulic aperture. In this study, mechanical and hydraulic aperture were concluded to be closely related to value, and their relations can be denoted by and ,","PeriodicalId":437780,"journal":{"name":"Journal of Korean Society for Rock Mechanics","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Society for Rock Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7474/TUS.2014.24.2.176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Roughness, aperture and filling material of rock joint are widely considered to affect the hydraulic characteristics of joint. Among these factors, in this study, the joint roughness was examined with artificial joint profiles generated by Monte Carlo simulating on the original profiles suggested by Barton and Choubey(1977). Original profiles and revised profiles were combined to establish flow channel models, in which the hydraulic characteristics were analyzed numerically on the basis of minimum aperture changes and flow channel shapes. Maximum flow rate was identified at the growing point of flow area after passing through minimum aperture generated by the two profiles, and it was resulted that maximum flow rate is inversely proportional to minimum aperture. Maximum flow rate per unit area showed different values because flow channel shapes and minimum aperture locations are different in each model. In flow channel, mechanical aperture showed approximately 1.07 ~ 3.00 times larger than hydraulic aperture. In this study, mechanical and hydraulic aperture were concluded to be closely related to value, and their relations can be denoted by and ,