A digital neural network LSI using sparse memory access architecture

K. Aihara, O. Fujita, K. Uchimura
{"title":"A digital neural network LSI using sparse memory access architecture","authors":"K. Aihara, O. Fujita, K. Uchimura","doi":"10.1109/MNNFS.1996.493784","DOIUrl":null,"url":null,"abstract":"A sparse memory access architecture is proposed to achieve a high-computational-speed neural network LSI. The architecture uses two key techniques, compressible synapse weight neuron calculation and differential neuron operation, to reduce the number of accesses to synapse weight memories and the number of neurons. Calculations without an accuracy penalty. In a pattern recognition example, the number of memory accesses and neuron calculations are reduced to 0.87% of that in the conventional method and the practical performance is 18 GCPS.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A sparse memory access architecture is proposed to achieve a high-computational-speed neural network LSI. The architecture uses two key techniques, compressible synapse weight neuron calculation and differential neuron operation, to reduce the number of accesses to synapse weight memories and the number of neurons. Calculations without an accuracy penalty. In a pattern recognition example, the number of memory accesses and neuron calculations are reduced to 0.87% of that in the conventional method and the practical performance is 18 GCPS.
采用稀疏存储器访问结构的数字神经网络LSI
为了实现高计算速度的神经网络大规模集成电路,提出了一种稀疏存储器访问结构。该架构采用可压缩突触权重神经元计算和差分神经元操作两项关键技术,以减少对突触权重记忆的访问次数和神经元数量。没有精度损失的计算。在一个模式识别实例中,该方法的内存访问次数和神经元计算次数减少到传统方法的0.87%,实际性能为18 GCPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信