Evaluating Word Embeddings on Low-Resource Languages

Nathan Stringham, Michael Izbicki
{"title":"Evaluating Word Embeddings on Low-Resource Languages","authors":"Nathan Stringham, Michael Izbicki","doi":"10.18653/v1/2020.eval4nlp-1.17","DOIUrl":null,"url":null,"abstract":"The analogy task introduced by Mikolov et al. (2013) has become the standard metric for tuning the hyperparameters of word embedding models. In this paper, however, we argue that the analogy task is unsuitable for low-resource languages for two reasons: (1) it requires that word embeddings be trained on large amounts of text, and (2) analogies may not be well-defined in some low-resource settings. We solve these problems by introducing the OddOneOut and Topk tasks, which are specifically designed for model selection in the low-resource setting. We use these metrics to successfully tune hyperparameters for a low-resource emoji embedding task and word embeddings on 16 extinct languages. The largest of these languages (Ancient Hebrew) has a 41 million token dataset, and the smallest (Old Gujarati) has only a 1813 token dataset.","PeriodicalId":448066,"journal":{"name":"Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.eval4nlp-1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The analogy task introduced by Mikolov et al. (2013) has become the standard metric for tuning the hyperparameters of word embedding models. In this paper, however, we argue that the analogy task is unsuitable for low-resource languages for two reasons: (1) it requires that word embeddings be trained on large amounts of text, and (2) analogies may not be well-defined in some low-resource settings. We solve these problems by introducing the OddOneOut and Topk tasks, which are specifically designed for model selection in the low-resource setting. We use these metrics to successfully tune hyperparameters for a low-resource emoji embedding task and word embeddings on 16 extinct languages. The largest of these languages (Ancient Hebrew) has a 41 million token dataset, and the smallest (Old Gujarati) has only a 1813 token dataset.
低资源语言的词嵌入评价
Mikolov等人(2013)引入的类比任务已经成为调优词嵌入模型超参数的标准度量。然而,在本文中,我们认为类比任务不适合低资源语言,原因有两个:(1)它需要在大量文本上训练词嵌入,(2)在一些低资源设置中可能没有定义类比。我们通过引入OddOneOut和Topk任务来解决这些问题,它们是专门为低资源设置中的模型选择而设计的。我们使用这些指标成功地为低资源的表情符号嵌入任务和16种灭绝语言的单词嵌入调整了超参数。这些语言中最大的(古希伯来语)有4100万个令牌数据集,最小的(古吉拉特语)只有1813个令牌数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信