{"title":"A CMOS 33-mW 100-MHz 80-dB SFDR sample-and-hold amplifier","authors":"Cheng-Chung Hsu, Jieh-Tsorng Wu","doi":"10.1109/VLSIC.2003.1221222","DOIUrl":null,"url":null,"abstract":"A high-speed high-resolution sample-and-hold amplifier (SHA) is designed for time-interleaved analog-to-digital converter applications. Using the techniques of precharging and output capacitor coupling can mitigate the stringent performance requirements for the opamp, resulting in low power dissipation. Implemented in a standard 0.25 /spl mu/m CMOS technology, the SHA achieves 80 dB spurious-free dynamic range (SFDR) for a 1.8 Vpp output at 100 MHz Nyquist sampling rate. The SHA occupies a die area of 0.35 mm/sup 2/ and dissipates 33 mW from a single 2.5 V supply.","PeriodicalId":270304,"journal":{"name":"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2003.1221222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
A high-speed high-resolution sample-and-hold amplifier (SHA) is designed for time-interleaved analog-to-digital converter applications. Using the techniques of precharging and output capacitor coupling can mitigate the stringent performance requirements for the opamp, resulting in low power dissipation. Implemented in a standard 0.25 /spl mu/m CMOS technology, the SHA achieves 80 dB spurious-free dynamic range (SFDR) for a 1.8 Vpp output at 100 MHz Nyquist sampling rate. The SHA occupies a die area of 0.35 mm/sup 2/ and dissipates 33 mW from a single 2.5 V supply.