{"title":"Opportunistic Temporal Spectrum Coexistence of Passive Radiometry and Active Wireless Networks","authors":"Mohammad Koosha, Nicholas Mastronarde","doi":"10.1109/WNYISPW57858.2022.9983493","DOIUrl":null,"url":null,"abstract":"There is insufficient wireless frequency spectrum to support the continued growth of active wireless technologies and devices. This has provoked extensive research on spectrum coexistence. One case that has gained limited attention in this course is using currently banned frequency bands for active wireless communications. One such option is the 27 MHz-wide narrowband portion of the L-band from 1.400 to 1.427 GHz, which is exclusively devoted to space-borne passive radiometry for remote sensing and radio astronomy. Radio regulations currently prohibit active wireless communications and radars from operating in this band to avoid radio frequency interference (RFI) on highly noise-sensitive passive radiometry equipment. The National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active Passive (SMAP) satellite is one of the latest space-borne remote sensing missions that evaluates global soil moisture by passive scanning of the thermal emissions of the earth in this frequency band. In this paper, we investigate the opportunistic temporal use of this 27 MHz-wide passive radiometry band for active wireless transmissions when there is no Line of Sight (LoS) between SMAP and a terrestrial wireless network. We use MATLAB simulations to determine the fraction of time that SMAP has LoS (and non-LoS) with a terrestrial wireless cell at different Earth latitudes based on SMAP’s orbital characteristics. We also investigate the severity of RFI induced on SMAP in the presence of a terrestrial cluster of 5G cells with LoS.","PeriodicalId":427869,"journal":{"name":"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","volume":"384 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Western New York Image and Signal Processing Workshop (WNYISPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYISPW57858.2022.9983493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
There is insufficient wireless frequency spectrum to support the continued growth of active wireless technologies and devices. This has provoked extensive research on spectrum coexistence. One case that has gained limited attention in this course is using currently banned frequency bands for active wireless communications. One such option is the 27 MHz-wide narrowband portion of the L-band from 1.400 to 1.427 GHz, which is exclusively devoted to space-borne passive radiometry for remote sensing and radio astronomy. Radio regulations currently prohibit active wireless communications and radars from operating in this band to avoid radio frequency interference (RFI) on highly noise-sensitive passive radiometry equipment. The National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active Passive (SMAP) satellite is one of the latest space-borne remote sensing missions that evaluates global soil moisture by passive scanning of the thermal emissions of the earth in this frequency band. In this paper, we investigate the opportunistic temporal use of this 27 MHz-wide passive radiometry band for active wireless transmissions when there is no Line of Sight (LoS) between SMAP and a terrestrial wireless network. We use MATLAB simulations to determine the fraction of time that SMAP has LoS (and non-LoS) with a terrestrial wireless cell at different Earth latitudes based on SMAP’s orbital characteristics. We also investigate the severity of RFI induced on SMAP in the presence of a terrestrial cluster of 5G cells with LoS.