Commutativity of Composition of some Elementary Cellular Automata with Essentially 2-Neighborhood Local Functions over Monoids

Toshikazu Ishida, Shuichi Inokuchi
{"title":"Commutativity of Composition of some Elementary Cellular Automata with Essentially 2-Neighborhood Local Functions over Monoids","authors":"Toshikazu Ishida, Shuichi Inokuchi","doi":"10.1109/CANDARW53999.2021.00045","DOIUrl":null,"url":null,"abstract":"The local function of a cellular automaton with binary states can be expressed by a formula in propositional logic. The inverse function of a local function of any reversible cellular automation can also be expressed as a propositional logic formula, and using it as a local function then, we can define the cellular automation. The multiplication of these formulae in propositional logic is defined using the action of the cell space as a dynamical system and yields the local function of the composition of two cellular automata.In this study, we deal with logical formulae on a commutative monoid as local functions of elementary cellular automata. We focus on essentially 2-neighborhood local functions and the logical symbol \"Implication\" on commutative monoids. We discuss the commutativity of multiplication of the formulae and show some conditions for formulae to satisfy the commutativity of the composition of elementary cellular automata.","PeriodicalId":325028,"journal":{"name":"2021 Ninth International Symposium on Computing and Networking Workshops (CANDARW)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Ninth International Symposium on Computing and Networking Workshops (CANDARW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW53999.2021.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The local function of a cellular automaton with binary states can be expressed by a formula in propositional logic. The inverse function of a local function of any reversible cellular automation can also be expressed as a propositional logic formula, and using it as a local function then, we can define the cellular automation. The multiplication of these formulae in propositional logic is defined using the action of the cell space as a dynamical system and yields the local function of the composition of two cellular automata.In this study, we deal with logical formulae on a commutative monoid as local functions of elementary cellular automata. We focus on essentially 2-neighborhood local functions and the logical symbol "Implication" on commutative monoids. We discuss the commutativity of multiplication of the formulae and show some conditions for formulae to satisfy the commutativity of the composition of elementary cellular automata.
一元群上具有2邻域局部函数的初等元胞自动机的交换性
二元状态元胞自动机的局部函数可以用命题逻辑中的公式表示。任何可逆元胞自动化的局部函数的逆函数也可以表示为命题逻辑公式,并以此作为局部函数来定义元胞自动化。在命题逻辑中,这些公式的乘法被定义为使用细胞空间作为动力系统的作用,并产生两个细胞自动机组成的局部函数。在本研究中,我们讨论了交换单群上的逻辑公式作为初等元胞自动机的局部函数。我们主要讨论了交换模群上的2邻域局部函数和逻辑符号“蕴涵”。讨论了公式乘法的交换性,给出了满足初等元胞自动机组合的交换性的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信