Recursive Fast Fourier Transforms

G. Epstein
{"title":"Recursive Fast Fourier Transforms","authors":"G. Epstein","doi":"10.1145/1476589.1476612","DOIUrl":null,"url":null,"abstract":"The development of the Fast Fourier Transform in complex notation has obscured the savings that can be made through the use of recursive properties of trigometric functions. A disadvantage of the Fast Fourier Transform is that all samples of the function must be stored in memory before processing can start. The computation in the Fast Fourier Transform occurs after the receipt of the last sample of the function; there is no processing of the incoming data prior to this point. Thus if there are N samples of each function, and G different functions (in G \"gates\" or \"channels\"), then a total of GN words must be stored in memory.","PeriodicalId":294588,"journal":{"name":"Proceedings of the December 9-11, 1968, fall joint computer conference, part I","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1899-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the December 9-11, 1968, fall joint computer conference, part I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1476589.1476612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The development of the Fast Fourier Transform in complex notation has obscured the savings that can be made through the use of recursive properties of trigometric functions. A disadvantage of the Fast Fourier Transform is that all samples of the function must be stored in memory before processing can start. The computation in the Fast Fourier Transform occurs after the receipt of the last sample of the function; there is no processing of the incoming data prior to this point. Thus if there are N samples of each function, and G different functions (in G "gates" or "channels"), then a total of GN words must be stored in memory.
递归快速傅里叶变换
复杂符号中快速傅里叶变换的发展掩盖了通过使用三角函数的递归性质可以节省的时间。快速傅里叶变换的一个缺点是,在处理开始之前,函数的所有样本必须存储在内存中。快速傅里叶变换中的计算发生在接收到函数的最后一个样本之后;在此之前没有对传入数据进行处理。因此,如果每个函数有N个样本,并且有G个不同的函数(在G个“门”或“通道”中),那么内存中必须存储总共GN个单词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信