Shading Design For Outdoor Learning in Warm And Hot Climates Using Evolutionary Computation: A Case Study In Houston Tx.

Mili Kyropoulou
{"title":"Shading Design For Outdoor Learning in Warm And Hot Climates Using Evolutionary Computation: A Case Study In Houston Tx.","authors":"Mili Kyropoulou","doi":"10.23919/ANNSIM55834.2022.9859518","DOIUrl":null,"url":null,"abstract":"This research proposes a parametric workflow to environmentally optimize the shading design of outdoor educational spaces using multiobjective evolutionary algorithms. The design variants that are parametrically evaluated against thermal and visual comfort indices and the economy of the structure are shading growth and permeability. Part of the investigation is optimizing geometric modeling, environmental parameter benchmarking, evolutionary solver parameters definition, solution analysis, and the solution selection process. Outdoor thermal comfort is assessed using the Universal Thermal Climate Index, and visual comfort using horizontal illuminance levels and daylight uniformity. Minimizing the required shading area is used as a material resource consideration. The results showed that the solver could reach stability early on; therefore, a smaller population could lead to similar results and that material consideration is fundamental to the optimization process. The validation of the selected solution proved the effectiveness of the shading and the ability of the methodology to assist early design.","PeriodicalId":374469,"journal":{"name":"2022 Annual Modeling and Simulation Conference (ANNSIM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM55834.2022.9859518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research proposes a parametric workflow to environmentally optimize the shading design of outdoor educational spaces using multiobjective evolutionary algorithms. The design variants that are parametrically evaluated against thermal and visual comfort indices and the economy of the structure are shading growth and permeability. Part of the investigation is optimizing geometric modeling, environmental parameter benchmarking, evolutionary solver parameters definition, solution analysis, and the solution selection process. Outdoor thermal comfort is assessed using the Universal Thermal Climate Index, and visual comfort using horizontal illuminance levels and daylight uniformity. Minimizing the required shading area is used as a material resource consideration. The results showed that the solver could reach stability early on; therefore, a smaller population could lead to similar results and that material consideration is fundamental to the optimization process. The validation of the selected solution proved the effectiveness of the shading and the ability of the methodology to assist early design.
在温暖和炎热气候下使用进化计算的户外学习遮阳设计:德克萨斯州休斯顿的案例研究。
本研究提出了一种参数化工作流程,利用多目标进化算法对户外教育空间的遮阳设计进行环境优化。根据热舒适指数和视觉舒适指数以及结构的经济性进行参数化评估的设计变量是遮阳增长和透气性。研究的一部分是优化几何建模、环境参数基准、进化求解器参数定义、解决方案分析和解决方案选择过程。室外热舒适使用通用热气候指数进行评估,视觉舒适使用水平照度和日光均匀性进行评估。最大限度地减少所需的遮阳面积被用作材料资源的考虑。结果表明,该求解器能较早地达到稳定;因此,较小的种群可能导致类似的结果,并且材料考虑是优化过程的基础。选定的解决方案的验证证明了遮阳的有效性和方法的能力,以协助早期设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信