Teaching Management and Monitoring Abnormal Network Behaviors Under COVID-19

Yao Li, Ping Luo
{"title":"Teaching Management and Monitoring Abnormal Network Behaviors Under COVID-19","authors":"Yao Li, Ping Luo","doi":"10.4018/IJDST.2021040106","DOIUrl":null,"url":null,"abstract":"Due to the epidemic of COVID-19, more social activities have been moved to the internet, such as online education and online learning. The education management to avoid burst events is a basic requirement of online education, especially when a huge number of persons are visiting at the same time. In order to monitor the abnormal and burst access in online education systems, this paper proposes an anomaly detection method by using data flow to mining high frequency events among massive network traffic data during online education. First, the data flow in traffic network is described as a special structure which is used to establish an efficient high frequent event detection algorithm. Second, the network traffic flow is reduced to make it possible to monitor large-scale concurrent network visiting. The effectiveness of the abnormal network behavior detection method is verified through the experiment on a real network environment for online education.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDST.2021040106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the epidemic of COVID-19, more social activities have been moved to the internet, such as online education and online learning. The education management to avoid burst events is a basic requirement of online education, especially when a huge number of persons are visiting at the same time. In order to monitor the abnormal and burst access in online education systems, this paper proposes an anomaly detection method by using data flow to mining high frequency events among massive network traffic data during online education. First, the data flow in traffic network is described as a special structure which is used to establish an efficient high frequent event detection algorithm. Second, the network traffic flow is reduced to make it possible to monitor large-scale concurrent network visiting. The effectiveness of the abnormal network behavior detection method is verified through the experiment on a real network environment for online education.
新冠肺炎疫情下的教学管理与网络异常行为监测
由于新冠肺炎疫情,越来越多的社交活动转移到互联网上,例如在线教育和在线学习。避免突发事件的教育管理是在线教育的基本要求,特别是在大量人员同时访问的情况下。为了监测在线教育系统中的异常访问和突发访问,本文提出了一种利用数据流挖掘在线教育过程中海量网络流量数据中的高频事件的异常检测方法。首先,将交通网络中的数据流描述为一种特殊的结构,并利用该结构建立高效的高频事件检测算法。其次,减少了网络流量,使大规模并发网络访问监控成为可能。通过在线教育的真实网络环境实验,验证了异常网络行为检测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信