{"title":"EMR: Scalable Clustering of Big HR Data using Evolutionary MapReduce","authors":"M. Bohlouli, Zhonghua He","doi":"10.1145/3442442.3453543","DOIUrl":null,"url":null,"abstract":"Nowadays, the volume and variety of generated data, how to process it and accordingly create value through scalable analytics are main challenges to industries and real-world practices such as talent analytics. For instance, large enterprises and job centres have to progress data intensive matching of job seekers to various job positions at the same time. In other words, it should result in the large scale assignment of best-fit (right) talents (Person) with right expertise (Profession) to the right job (Position) at the right time (Period). We call this definition as a 4P rule in this paper. All enterprises should consider 4P rule in their daily recruitment processes towards efficient workforce development strategies. Such consideration demands integrating large volumes of disparate data from various sources and strongly needs the use of scalable algorithms and analytics. The diversity of the data in human resource management requires speeding up analytical processes. The main challenge here is not only how and where to store the data, but also the analysing it towards creating value (knowledge discovery). In this paper, we propose a generic Career Knowledge Representation (CKR) model in order to be able to model most competences that exist in a wide variety of careers. A regenerated job qualification data of 15 million employees with 84 dimensions (competences) from real HRM data has been used in test and evaluation of proposed Evolutionary MapReduce K-Means method in this research. This proposed EMR method shows faster and more accurate experimental results in comparison to similar approaches and has been tested with real large scale datasets and achieved results are already discussed.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3453543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, the volume and variety of generated data, how to process it and accordingly create value through scalable analytics are main challenges to industries and real-world practices such as talent analytics. For instance, large enterprises and job centres have to progress data intensive matching of job seekers to various job positions at the same time. In other words, it should result in the large scale assignment of best-fit (right) talents (Person) with right expertise (Profession) to the right job (Position) at the right time (Period). We call this definition as a 4P rule in this paper. All enterprises should consider 4P rule in their daily recruitment processes towards efficient workforce development strategies. Such consideration demands integrating large volumes of disparate data from various sources and strongly needs the use of scalable algorithms and analytics. The diversity of the data in human resource management requires speeding up analytical processes. The main challenge here is not only how and where to store the data, but also the analysing it towards creating value (knowledge discovery). In this paper, we propose a generic Career Knowledge Representation (CKR) model in order to be able to model most competences that exist in a wide variety of careers. A regenerated job qualification data of 15 million employees with 84 dimensions (competences) from real HRM data has been used in test and evaluation of proposed Evolutionary MapReduce K-Means method in this research. This proposed EMR method shows faster and more accurate experimental results in comparison to similar approaches and has been tested with real large scale datasets and achieved results are already discussed.