Image copy detection via dictionary learning and sparse coding

Chih-Yang Lin, Li-Wei Kang, K. Muchtar, Jyh-Da Wei, C. Yeh
{"title":"Image copy detection via dictionary learning and sparse coding","authors":"Chih-Yang Lin, Li-Wei Kang, K. Muchtar, Jyh-Da Wei, C. Yeh","doi":"10.1109/ISIC.2012.6449751","DOIUrl":null,"url":null,"abstract":"In this paper, a new robust image hashing scheme for image authentication via dictionary-based sparse representation of images is proposed. For image hash extraction, we create an over-complete dictionary containing the prototype image atoms to build the hash for an image, where each image patch can be represented by sparse linear combinations of these atoms. The major contribution is to formulate the image authentication problem as a sparse coding problem. Based on the energy distribution of nonzero coefficients of the sparse representation for an image, the authentication of the image can be achieved. Simulation results have shown the proposed scheme is robust to several content-preserving image attacks defined in StirMark.","PeriodicalId":393653,"journal":{"name":"2012 International Conference on Information Security and Intelligent Control","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Security and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6449751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new robust image hashing scheme for image authentication via dictionary-based sparse representation of images is proposed. For image hash extraction, we create an over-complete dictionary containing the prototype image atoms to build the hash for an image, where each image patch can be represented by sparse linear combinations of these atoms. The major contribution is to formulate the image authentication problem as a sparse coding problem. Based on the energy distribution of nonzero coefficients of the sparse representation for an image, the authentication of the image can be achieved. Simulation results have shown the proposed scheme is robust to several content-preserving image attacks defined in StirMark.
基于字典学习和稀疏编码的图像复制检测
本文提出了一种新的基于字典的图像稀疏表示的鲁棒图像哈希认证方案。对于图像哈希提取,我们创建了一个包含原型图像原子的过完备字典来构建图像的哈希,其中每个图像补丁可以由这些原子的稀疏线性组合表示。主要的贡献是将图像认证问题表述为稀疏编码问题。基于图像稀疏表示的非零系数能量分布,实现图像的认证。仿真结果表明,该算法对StirMark中定义的几种内容保持图像攻击具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信