Using element and document profile for information clustering

J. Lai, B. Soh
{"title":"Using element and document profile for information clustering","authors":"J. Lai, B. Soh","doi":"10.1109/EEE.2004.1287354","DOIUrl":null,"url":null,"abstract":"The tremendous growth in the amount of information available and the number of visitors to Web sites in the recent years poses some key challenges for information filtering and retrieval. Web visitors not only expect high quality and relevant information, but also wish that the information be presented in an as efficient way as possible. The traditional filtering methods, however, only consider the relevant values of document. These conventional methods fail to consider the efficiency of documents retrieval. In this paper, we propose a new algorithm to calculate an index called document similarity score based on elements of the document. Using the index, document profile will be derived. Any documents with the similarity score above a given threshold are clustered. Using these pre-clustered documents, information filtering and retrieval can be made more efficient.","PeriodicalId":360167,"journal":{"name":"IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on e-Technology, e-Commerce and e-Service, 2004. EEE '04. 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEE.2004.1287354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The tremendous growth in the amount of information available and the number of visitors to Web sites in the recent years poses some key challenges for information filtering and retrieval. Web visitors not only expect high quality and relevant information, but also wish that the information be presented in an as efficient way as possible. The traditional filtering methods, however, only consider the relevant values of document. These conventional methods fail to consider the efficiency of documents retrieval. In this paper, we propose a new algorithm to calculate an index called document similarity score based on elements of the document. Using the index, document profile will be derived. Any documents with the similarity score above a given threshold are clustered. Using these pre-clustered documents, information filtering and retrieval can be made more efficient.
使用元素和文档配置文件进行信息聚类
近年来,可获得的信息量和访问Web站点的人数的巨大增长对信息过滤和检索提出了一些关键的挑战。网络访问者不仅希望获得高质量和相关的信息,而且希望信息以尽可能高效的方式呈现。传统的过滤方法只考虑文档的相关值。这些传统的方法没有考虑到文档检索的效率。在本文中,我们提出了一种基于文档元素计算文档相似度分数的新算法。使用索引,将派生文档概要文件。任何相似度得分高于给定阈值的文档都被聚类。使用这些预聚类文档,可以提高信息过滤和检索的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信