Shunichi Kimura, E. Tanaka, Masanori Sekino, Takuya Sakurai, Satoshi Kubota, Ikken So, Y. Koshi
{"title":"A Man-Machine Cooperating System Based on the Generalized Reject Model","authors":"Shunichi Kimura, E. Tanaka, Masanori Sekino, Takuya Sakurai, Satoshi Kubota, Ikken So, Y. Koshi","doi":"10.1109/ICDAR.2017.218","DOIUrl":null,"url":null,"abstract":"In recognition systems, reject options are usually introduced to reduce error rates for general classifiers. For taking this option, there is a trade-off relationship between error rates and reject rates and it is required to optimize the trade-off. Conventional methods have implicit assumptions that the error rates are zero after the rejection; however, real systems have their own error rates even after the rejection. In this paper, we propose a generalized reject model that can introduce error rates after rejection. This model can handle variety of systems with plural classifiers and thresholds. Also, we can optimize the error-reject trade-off by defining and minimizing a cost function of the model. Finally, experimental results show effectiveness of the proposed model by applying it to data entry systems.","PeriodicalId":433676,"journal":{"name":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2017.218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In recognition systems, reject options are usually introduced to reduce error rates for general classifiers. For taking this option, there is a trade-off relationship between error rates and reject rates and it is required to optimize the trade-off. Conventional methods have implicit assumptions that the error rates are zero after the rejection; however, real systems have their own error rates even after the rejection. In this paper, we propose a generalized reject model that can introduce error rates after rejection. This model can handle variety of systems with plural classifiers and thresholds. Also, we can optimize the error-reject trade-off by defining and minimizing a cost function of the model. Finally, experimental results show effectiveness of the proposed model by applying it to data entry systems.