Olaf Beyersdorff, Mikoláš Janota, Florian Lonsing, M. Seidl
{"title":"Quantified Boolean Formulas","authors":"Olaf Beyersdorff, Mikoláš Janota, Florian Lonsing, M. Seidl","doi":"10.3233/FAIA201015","DOIUrl":null,"url":null,"abstract":"Solvers for quantified Boolean formulas (QBF) have become powerful tools for tackling hard computational problems from various application domains, even beyond the scope of SAT. This chapter gives a description of the main algorithmic paradigms for QBF solving, including quantified conflict driven clause learning (QCDCL), expansion-based solving, dependency schemes, and QBF preprocessing. Particular emphasis is laid on the connections of these solving approaches to QBF proof systems: Q-Resolution and its variants in the case of QCDCL, expansion QBF resolution calculi for expansion-based solving, and QRAT for preprocessing. The chapter also surveys the relations between the various QBF proof systems and results on their proof complexity, thereby shedding light on the diverse performance characteristics of different solving approaches that are observed in practice.","PeriodicalId":250589,"journal":{"name":"Handbook of Satisfiability","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Satisfiability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FAIA201015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Solvers for quantified Boolean formulas (QBF) have become powerful tools for tackling hard computational problems from various application domains, even beyond the scope of SAT. This chapter gives a description of the main algorithmic paradigms for QBF solving, including quantified conflict driven clause learning (QCDCL), expansion-based solving, dependency schemes, and QBF preprocessing. Particular emphasis is laid on the connections of these solving approaches to QBF proof systems: Q-Resolution and its variants in the case of QCDCL, expansion QBF resolution calculi for expansion-based solving, and QRAT for preprocessing. The chapter also surveys the relations between the various QBF proof systems and results on their proof complexity, thereby shedding light on the diverse performance characteristics of different solving approaches that are observed in practice.