Development of thermoelectric generating stacked modules aiming for 15% of conversion efficiency

H. Kaibe, I. Aoyama, M. Mukoujima, Toshio Kanda, S. Fujimoto, Toshitaka Kurosawa, H. Ishimabushi, K. Ishida, L. Rauscher, Yasuhiko Hata, S. Sano
{"title":"Development of thermoelectric generating stacked modules aiming for 15% of conversion efficiency","authors":"H. Kaibe, I. Aoyama, M. Mukoujima, Toshio Kanda, S. Fujimoto, Toshitaka Kurosawa, H. Ishimabushi, K. Ishida, L. Rauscher, Yasuhiko Hata, S. Sano","doi":"10.1109/ICT.2005.1519929","DOIUrl":null,"url":null,"abstract":"Under NEDO project \"The development for advanced thermoelectric conversion system\", Komatsu Ltd. is involved in R&D for suicide, Bi-Te and their cascading modules. Aiming to 15% of conversion efficiency /spl eta/ under the hot side T/sub h/=580/spl deg/C and the cold side T/sub c/=30/spl deg/C until March, 2007, 12% as midterm target was already well attained. In the next 2 years, module designing as well as materials tuning are surely the major topics in terms of superior durability. Bi-Te module, which is established as Peltier cooler, was adjusted to be suitable for generation purpose. So far, better than 7.8% of conversion efficiency with T/sub h/=280/spl deg/C and T/sub c/=30/spl deg/C was obtained and reproducibility was also well confirmed. Komatsu started investigation for suicide materials as well as module fabrication together with this NEDO project. The performance of suicide module using n-type Mg-Si and p-type MnSi are being steadily improved due to not only the elevation of Z-values of the materials but also maturity of module fabrication technique. Then, better than 8% of efficiency has been maintained at T/sub h/=550/spl deg/C and T/sub c/=30/spl deg/C. Besides each single module, the cascading one was successfully stacked and the performance was achieved almost as expected. /spl eta/=12.1% with T/sub h/=550/spl deg/C and T/sub c/=30/spl deg/C was actually accomplished up to now.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Under NEDO project "The development for advanced thermoelectric conversion system", Komatsu Ltd. is involved in R&D for suicide, Bi-Te and their cascading modules. Aiming to 15% of conversion efficiency /spl eta/ under the hot side T/sub h/=580/spl deg/C and the cold side T/sub c/=30/spl deg/C until March, 2007, 12% as midterm target was already well attained. In the next 2 years, module designing as well as materials tuning are surely the major topics in terms of superior durability. Bi-Te module, which is established as Peltier cooler, was adjusted to be suitable for generation purpose. So far, better than 7.8% of conversion efficiency with T/sub h/=280/spl deg/C and T/sub c/=30/spl deg/C was obtained and reproducibility was also well confirmed. Komatsu started investigation for suicide materials as well as module fabrication together with this NEDO project. The performance of suicide module using n-type Mg-Si and p-type MnSi are being steadily improved due to not only the elevation of Z-values of the materials but also maturity of module fabrication technique. Then, better than 8% of efficiency has been maintained at T/sub h/=550/spl deg/C and T/sub c/=30/spl deg/C. Besides each single module, the cascading one was successfully stacked and the performance was achieved almost as expected. /spl eta/=12.1% with T/sub h/=550/spl deg/C and T/sub c/=30/spl deg/C was actually accomplished up to now.
开发热电发电堆叠模块,目标是转换效率达到15%
在NEDO项目“先进热电转换系统的开发”中,小松公司参与了自杀,Bi-Te及其级联模块的研发。截止到2007年3月,在热侧T/sub /=580/spl dec,冷侧T/sub /=30/spl dec下的转换效率/spl eta/达到15%,中期目标12%已经顺利实现。在未来的2年里,模块设计和材料调整肯定是卓越耐用性的主要主题。作为Peltier冷却器的Bi-Te模块被调整到适合发电的目的。目前,在温度/温度/温度=280/spl℃和温度/温度/温度=30/spl℃条件下,获得了优于7.8%的转化效率,并得到了较好的再现性。小松与NEDO项目一起开始了自杀材料和模块制造的调查。采用n型Mg-Si和p型MnSi的自杀式组件的性能随着材料z值的提高和组件制造技术的成熟而稳步提高。然后,在温度/小时/=550/spl度/C和温度/ subc /=30/spl度/C时,效率保持在8%以上。除单个模块外,级联模块也成功堆叠,性能基本达到预期。/spl eta/=12.1%, T/sub h/=550/spl度/C, T/sub C /=30/spl度/C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信