Detecting Human Thermal Discomfort via Physiological Signals

M. Abouelenien, Mihai Burzo, Rada Mihalcea, Kristen Rusinek, David Van Alstine
{"title":"Detecting Human Thermal Discomfort via Physiological Signals","authors":"M. Abouelenien, Mihai Burzo, Rada Mihalcea, Kristen Rusinek, David Van Alstine","doi":"10.1145/3056540.3064957","DOIUrl":null,"url":null,"abstract":"This paper provides a new approach to the automatic detection of thermal discomfort. We see this research as a step toward the development of an intelligent climate control system that does not require any explicit input from the users. We introduce a novel dataset that simulates different thermal comfort/discomfort levels and we provide a complete analysis of different physiological signals and their capability of discriminating between these levels. Our approach is successful in detecting the thermal sensation of human subjects and it is expected to enable innovative adaptive control scenarios for enclosed environments as well as a significant reduction in energy consumption.","PeriodicalId":140232,"journal":{"name":"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3056540.3064957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper provides a new approach to the automatic detection of thermal discomfort. We see this research as a step toward the development of an intelligent climate control system that does not require any explicit input from the users. We introduce a novel dataset that simulates different thermal comfort/discomfort levels and we provide a complete analysis of different physiological signals and their capability of discriminating between these levels. Our approach is successful in detecting the thermal sensation of human subjects and it is expected to enable innovative adaptive control scenarios for enclosed environments as well as a significant reduction in energy consumption.
通过生理信号检测人体热不适
本文为热不适感的自动检测提供了一种新的方法。我们认为这项研究是朝着开发智能气候控制系统迈出的一步,该系统不需要用户的任何明确输入。我们引入了一个新的数据集来模拟不同的热舒适/不适水平,我们提供了不同生理信号的完整分析及其在这些水平之间的区分能力。我们的方法在检测人类受试者的热感觉方面取得了成功,有望为封闭环境提供创新的自适应控制方案,并显著降低能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信