{"title":"Agent-Based Derivation of the SIR-Differential Equations","authors":"M. Bicher, N. Popper","doi":"10.1109/EUROSIM.2013.62","DOIUrl":null,"url":null,"abstract":"Due to exponentially increasing computational resources, individual-based models are getting more and more popular among epidemiologists. Inspired by SIR (Susceptible-Infected-Recovered) epidemics very complex and flexible models for diseases and vaccine strategies can be created accepting the risk, that maybe unexplained and unpredictable chaotic group-behavior could distort the results. Preventive theoretical analysis of these microscopic models is still very difficult. Based on the idea of diffusion approximation a technique is presented, how the mean value of a simple predefined agent-based SIR model can be calculated to asymptotically satisfy the classic SIR differential equations by Kermack and McKendrick. This technique can be generalized to contribute to the analysis of agent-based models and can help developing hybrid models.","PeriodicalId":386945,"journal":{"name":"2013 8th EUROSIM Congress on Modelling and Simulation","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th EUROSIM Congress on Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIM.2013.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Due to exponentially increasing computational resources, individual-based models are getting more and more popular among epidemiologists. Inspired by SIR (Susceptible-Infected-Recovered) epidemics very complex and flexible models for diseases and vaccine strategies can be created accepting the risk, that maybe unexplained and unpredictable chaotic group-behavior could distort the results. Preventive theoretical analysis of these microscopic models is still very difficult. Based on the idea of diffusion approximation a technique is presented, how the mean value of a simple predefined agent-based SIR model can be calculated to asymptotically satisfy the classic SIR differential equations by Kermack and McKendrick. This technique can be generalized to contribute to the analysis of agent-based models and can help developing hybrid models.