Learning multi-channel power allocation against smart jammer in cognitive radio networks

Feten Slimeni, B. Scheers, V. Le Nir, Zied Chtourou, R. Attia
{"title":"Learning multi-channel power allocation against smart jammer in cognitive radio networks","authors":"Feten Slimeni, B. Scheers, V. Le Nir, Zied Chtourou, R. Attia","doi":"10.1109/ICMCIS.2016.7496544","DOIUrl":null,"url":null,"abstract":"We model the power allocation interaction between a cognitive radio and a jammer as a two-player zero-sum game. First, we determine the power allocation strategy for the cognitive radio using a modified version of the Q-learning algorithm against fixed jamming strategies. The learned anti-jamming strategy will be compared to the common waterfilling technique. Then, we consider the power allocation game using Q-learning for both the cognitive radio and the jammer. The learned strategies will be compared to the Nash equilibrium found under the assumption of perfect knowledge. Finally, we consider the real scenario of a jammer with imperfect information.","PeriodicalId":103155,"journal":{"name":"2016 International Conference on Military Communications and Information Systems (ICMCIS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Military Communications and Information Systems (ICMCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCIS.2016.7496544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We model the power allocation interaction between a cognitive radio and a jammer as a two-player zero-sum game. First, we determine the power allocation strategy for the cognitive radio using a modified version of the Q-learning algorithm against fixed jamming strategies. The learned anti-jamming strategy will be compared to the common waterfilling technique. Then, we consider the power allocation game using Q-learning for both the cognitive radio and the jammer. The learned strategies will be compared to the Nash equilibrium found under the assumption of perfect knowledge. Finally, we consider the real scenario of a jammer with imperfect information.
认知无线电网络中针对智能干扰的多信道功率分配学习
我们将认知无线电和干扰机之间的功率分配互动建模为二人零和游戏。首先,我们使用改进版本的q -学习算法来确定针对固定干扰策略的认知无线电的功率分配策略。将学习到的抗干扰策略与常见的充水技术进行比较。然后,我们考虑了基于q学习的认知无线电和干扰机的功率分配博弈。将学习到的策略与完全知识假设下的纳什均衡进行比较。最后,我们考虑了具有不完全信息的干扰机的真实情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信