Unsupervised Topic Detection based on 2D Vector Space model using Apriori Algorithm and NLP

Michael George
{"title":"Unsupervised Topic Detection based on 2D Vector Space model using Apriori Algorithm and NLP","authors":"Michael George","doi":"10.1109/ICDIM.2018.8846982","DOIUrl":null,"url":null,"abstract":"Topic modelling is an approach in data mining, use machine learning methods to discover patterns in large amount of unstructured text. It takes a collection of documents and group the words into clusters of words that we call Bag of words, and identify topics by using process of similarity. Topic modelling provides us with methods to organize, understand and summarize large collections of textual information. There are a lot of approaches have been exposed for Topic modelling, the most in use are Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA) and explicit semantic analysis (ESA). In our study we describing an approach to refine Topic detection based on 2d vector space model VSM by using Apriori algorithm along with Natural language processing, to form a better connected terms in vector space for clean engagement with the query.","PeriodicalId":120884,"journal":{"name":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2018.8846982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Topic modelling is an approach in data mining, use machine learning methods to discover patterns in large amount of unstructured text. It takes a collection of documents and group the words into clusters of words that we call Bag of words, and identify topics by using process of similarity. Topic modelling provides us with methods to organize, understand and summarize large collections of textual information. There are a lot of approaches have been exposed for Topic modelling, the most in use are Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA) and explicit semantic analysis (ESA). In our study we describing an approach to refine Topic detection based on 2d vector space model VSM by using Apriori algorithm along with Natural language processing, to form a better connected terms in vector space for clean engagement with the query.
基于Apriori算法和NLP的二维向量空间模型无监督主题检测
主题建模是数据挖掘中的一种方法,利用机器学习方法在大量非结构化文本中发现模式。它采用一组文档,并将这些词分组成词簇,我们称之为词包,并利用相似度过程来识别主题。主题建模为我们提供了组织、理解和总结大量文本信息的方法。主题建模有很多方法,使用最多的是潜在语义分析(LSA)、潜在狄利克雷分配(LDA)和显式语义分析(ESA)。在我们的研究中,我们描述了一种基于二维向量空间模型VSM的改进主题检测的方法,通过使用Apriori算法和自然语言处理,在向量空间中形成更好的连接词,以便与查询干净地接触。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信