Detecting Cognitive Distortions Through Machine Learning Text Analytics

Taetem Simms, Clayton Ramstedt, Megan Rich, Michael Richards, T. Martinez, C. Giraud-Carrier
{"title":"Detecting Cognitive Distortions Through Machine Learning Text Analytics","authors":"Taetem Simms, Clayton Ramstedt, Megan Rich, Michael Richards, T. Martinez, C. Giraud-Carrier","doi":"10.1109/ICHI.2017.39","DOIUrl":null,"url":null,"abstract":"Machine learning and text analytics have proven increasingly useful in a number of health-related applications, particularly in the context of analyzing online data for disease epidemics and warning signs of a variety of mental health issues. We follow in this tradition here, but focus our attention on cognitive distortion, a precursor and symptom of disruptive psychological disorders such as anxiety, anorexia and depression. We collected a number of personal blogs from the Tumblr API, and labeled them based on whether they exhibited distorted thought patterns. We then used LIWC to extract textual features and applied machine learning to the resulting vectors. Our findings show that it is possible to detect cognitive distortions automatically from personal blogs with relatively good accuracy (73.0%) and false negative rate (30.4%).","PeriodicalId":263611,"journal":{"name":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Healthcare Informatics (ICHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHI.2017.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Machine learning and text analytics have proven increasingly useful in a number of health-related applications, particularly in the context of analyzing online data for disease epidemics and warning signs of a variety of mental health issues. We follow in this tradition here, but focus our attention on cognitive distortion, a precursor and symptom of disruptive psychological disorders such as anxiety, anorexia and depression. We collected a number of personal blogs from the Tumblr API, and labeled them based on whether they exhibited distorted thought patterns. We then used LIWC to extract textual features and applied machine learning to the resulting vectors. Our findings show that it is possible to detect cognitive distortions automatically from personal blogs with relatively good accuracy (73.0%) and false negative rate (30.4%).
通过机器学习文本分析检测认知扭曲
事实证明,机器学习和文本分析在许多与健康相关的应用中越来越有用,特别是在分析疾病流行的在线数据和各种心理健康问题的警告信号方面。在这里,我们沿袭了这一传统,但将注意力集中在认知扭曲上,这是破坏性心理障碍(如焦虑、厌食症和抑郁症)的前兆和症状。我们从Tumblr API中收集了一些个人博客,并根据它们是否表现出扭曲的思维模式对它们进行了标记。然后,我们使用LIWC提取文本特征,并将机器学习应用于结果向量。我们的研究结果表明,从个人博客中自动检测认知扭曲是可能的,准确率(73.0%)和假阴性率(30.4%)相对较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信