Recognition of offline handwritten numerals using an ensemble of MLPs combined by Adaboost

MOCR '13 Pub Date : 2013-08-24 DOI:10.1145/2505377.2505380
Tarun Jindal, U. Bhattacharya
{"title":"Recognition of offline handwritten numerals using an ensemble of MLPs combined by Adaboost","authors":"Tarun Jindal, U. Bhattacharya","doi":"10.1145/2505377.2505380","DOIUrl":null,"url":null,"abstract":"In this article, we present our recent study of offline recognition of handwritten numerals of three Indian scripts -- Devanagari, Bangla and Oriya. Here, we propose a novel approach to combination of multiple MLP classifiers with varying number of hidden nodes based on Adaboost technique. In this recognition study, we used Zernike moment features of different orders. We obtained classification results corresponding to a number of orders of this moment function and the best classification result for each script was obtained when the feature vector consists of moment values up to the order 8. It is well-known that the classification performance of an MLP largely depends on the choice of the number of hidden nodes. In the present work, we studied use of boosting as a solution to this problem of using MLP as a classifier in real-life applications. Here, we use an ensemble of MLP classifiers having different hidden layer sizes and results of their classification are combined based on Adaboost technique. Classification results have been provided using publicly available databases [1] of offline handwritten numeral images of three Indian scripts.","PeriodicalId":288465,"journal":{"name":"MOCR '13","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOCR '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505377.2505380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this article, we present our recent study of offline recognition of handwritten numerals of three Indian scripts -- Devanagari, Bangla and Oriya. Here, we propose a novel approach to combination of multiple MLP classifiers with varying number of hidden nodes based on Adaboost technique. In this recognition study, we used Zernike moment features of different orders. We obtained classification results corresponding to a number of orders of this moment function and the best classification result for each script was obtained when the feature vector consists of moment values up to the order 8. It is well-known that the classification performance of an MLP largely depends on the choice of the number of hidden nodes. In the present work, we studied use of boosting as a solution to this problem of using MLP as a classifier in real-life applications. Here, we use an ensemble of MLP classifiers having different hidden layer sizes and results of their classification are combined based on Adaboost technique. Classification results have been provided using publicly available databases [1] of offline handwritten numeral images of three Indian scripts.
使用Adaboost组合的mlp集合识别离线手写数字
在这篇文章中,我们介绍了我们最近对三种印度文字手写数字的离线识别研究——Devanagari、孟加拉语和奥里亚语。在这里,我们提出一个新颖的方法来组合多个MLP分类器与不同数量的隐藏节点基于演算法技术。在本识别研究中,我们使用了不同阶次的泽尼克矩特征。我们得到了该矩函数的多个阶数对应的分类结果,当特征向量由最高为8阶的矩值组成时,每个脚本的分类结果最好。众所周知,MLP的分类性能在很大程度上取决于隐藏节点数量的选择。在目前的工作中,我们研究了在实际应用中使用boosting作为MLP作为分类器的解决方案。在这里,我们使用具有不同隐藏层大小的MLP分类器的集合,并基于Adaboost技术将其分类结果组合在一起。使用公开可用的数据库提供了分类结果[1]的脱机手写数字图像三个印度脚本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信