Support Vector Regression Based on Scaling Reproducing Kernel for Black-Box System Identification

Hong Peng, Jun Wang
{"title":"Support Vector Regression Based on Scaling Reproducing Kernel for Black-Box System Identification","authors":"Hong Peng, Jun Wang","doi":"10.1109/ISDA.2006.260","DOIUrl":null,"url":null,"abstract":"A new least squares support vector regression model based on scaling reproducing kernel for black-box system identification is presented in this paper. The scaling reproducing kernel, which is a reproducing kernel in reproducing kernel Hilbert space (RKHS), is generated from the set of scaling basis function of some subspace of L 2(R). The support vector regression model incorporated the advantage of the support vector machines and the multi-resolution property of wavelet is discussed in detail. Experiments show that this method has better performance than other approaches","PeriodicalId":116729,"journal":{"name":"Sixth International Conference on Intelligent Systems Design and Applications","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2006.260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new least squares support vector regression model based on scaling reproducing kernel for black-box system identification is presented in this paper. The scaling reproducing kernel, which is a reproducing kernel in reproducing kernel Hilbert space (RKHS), is generated from the set of scaling basis function of some subspace of L 2(R). The support vector regression model incorporated the advantage of the support vector machines and the multi-resolution property of wavelet is discussed in detail. Experiments show that this method has better performance than other approaches
基于尺度再现核的支持向量回归黑箱系统识别
提出了一种新的基于尺度再现核的最小二乘支持向量回归模型用于黑盒系统辨识。缩放缩放核是由l2 (R)的某子空间的缩放基函数集合生成的,它是缩放缩放核Hilbert空间(RKHS)中的缩放缩放核。结合支持向量机的优点和小波的多分辨率特性,详细讨论了支持向量回归模型。实验表明,该方法具有较好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信