Robust multi-model fault detection and isolation with a state-space neural network

A. Czajkowski, M. Luzar, M. Witczak
{"title":"Robust multi-model fault detection and isolation with a state-space neural network","authors":"A. Czajkowski, M. Luzar, M. Witczak","doi":"10.1109/MED.2016.7535969","DOIUrl":null,"url":null,"abstract":"This paper presents an design of a Robust Fault Detection and Isolation (FDI) diagnostic system by the means of state-space neural network. First, an solution utilizing multimodel technique is described, in which a Single-Input MultiOutput (SIMO) system is decomposed into a number of Multi-Input Single-Output (MISO) and Single-Input Single-Output (SISO) models. Application of such models makes possible to calculate a set of residual signals required in evaluation process with a Model Error Modelling (MEM) to obtain diagnostic signals. In turn, to isolate faults the diagnostic signals together with defined binary diagnostic table are applied. For experimental verification of the proposed approach, the laboratory stand of Modular Servo is chosen. All necessary data were gathered with the Matlab/Simulink software.","PeriodicalId":428139,"journal":{"name":"2016 24th Mediterranean Conference on Control and Automation (MED)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2016.7535969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an design of a Robust Fault Detection and Isolation (FDI) diagnostic system by the means of state-space neural network. First, an solution utilizing multimodel technique is described, in which a Single-Input MultiOutput (SIMO) system is decomposed into a number of Multi-Input Single-Output (MISO) and Single-Input Single-Output (SISO) models. Application of such models makes possible to calculate a set of residual signals required in evaluation process with a Model Error Modelling (MEM) to obtain diagnostic signals. In turn, to isolate faults the diagnostic signals together with defined binary diagnostic table are applied. For experimental verification of the proposed approach, the laboratory stand of Modular Servo is chosen. All necessary data were gathered with the Matlab/Simulink software.
基于状态空间神经网络的鲁棒多模型故障检测与隔离
提出了一种基于状态空间神经网络的鲁棒故障检测与隔离诊断系统的设计方法。首先,描述了一种利用多模型技术的解决方案,其中将单输入多输出(SIMO)系统分解为多个多输入单输出(MISO)和单输入单输出(SISO)模型。这些模型的应用使得用模型误差建模(Model Error modeling, MEM)计算评估过程中所需的一组剩余信号成为可能,从而获得诊断信号。然后,利用诊断信号和定义好的二进制诊断表进行故障隔离。为了验证所提出的方法,选择了模块化伺服的实验台。使用Matlab/Simulink软件收集所有必要的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信