Learning to Simulate Crowds with Crowds

Bilas Talukdar, Yunhao Zhang, Tomer Weiss
{"title":"Learning to Simulate Crowds with Crowds","authors":"Bilas Talukdar, Yunhao Zhang, Tomer Weiss","doi":"10.1145/3588028.3603670","DOIUrl":null,"url":null,"abstract":"Controlling agent behaviors with Reinforcement Learning is of continuing interest in multiple areas. One major focus is to simulate multi-agent crowds that avoid collisions while locomoting to their goals. Although avoiding collisions is important, it is also necessary to capture realistic anticipatory navigation behaviors. We introduce a novel methodology that includes: 1) an RL method for learning an optimal navigational policy, 2) position-based constraints for correcting policy navigational decisions, and 3) a crowd-sourcing framework for selecting policy control parameters. Based on optimally selected parameters, we train a multi-agent navigation policy, which we demonstrate on crowd benchmarks. We compare our method to existing works, and demonstrate that our approach achieves superior multi-agent behaviors.","PeriodicalId":113397,"journal":{"name":"ACM SIGGRAPH 2023 Posters","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588028.3603670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling agent behaviors with Reinforcement Learning is of continuing interest in multiple areas. One major focus is to simulate multi-agent crowds that avoid collisions while locomoting to their goals. Although avoiding collisions is important, it is also necessary to capture realistic anticipatory navigation behaviors. We introduce a novel methodology that includes: 1) an RL method for learning an optimal navigational policy, 2) position-based constraints for correcting policy navigational decisions, and 3) a crowd-sourcing framework for selecting policy control parameters. Based on optimally selected parameters, we train a multi-agent navigation policy, which we demonstrate on crowd benchmarks. We compare our method to existing works, and demonstrate that our approach achieves superior multi-agent behaviors.
学习用人群模拟人群
用强化学习来控制智能体的行为在很多领域都引起了人们的兴趣。一个主要的焦点是模拟在向目标移动时避免碰撞的多智能体群体。虽然避免碰撞很重要,但捕捉现实的预期导航行为也是必要的。我们介绍了一种新的方法,包括:1)用于学习最优导航策略的强化学习方法,2)用于纠正策略导航决策的基于位置的约束,以及3)用于选择策略控制参数的众包框架。基于最优选择的参数,我们训练了一个多智能体导航策略,并在人群基准测试中进行了验证。我们将我们的方法与现有的工作进行了比较,并证明了我们的方法实现了更好的多智能体行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信