A Robust Tracking Algorithm Based on Feature Fusion and Occlusion Judgment

Cheng-Gang Gu, Zhan-Li Sun, Xia Chen
{"title":"A Robust Tracking Algorithm Based on Feature Fusion and Occlusion Judgment","authors":"Cheng-Gang Gu, Zhan-Li Sun, Xia Chen","doi":"10.1109/ICIVC.2018.8492748","DOIUrl":null,"url":null,"abstract":"How to achieve a robust performance remains an intractable problem in the various object tracking algorithms due to some unfavorable factors, e.g. occlusions, appearance change, etc. In this paper, a robust object tracking approach is proposed based on feature fusion and occlusion detection. Under the relevant filtering model, two complementary features, HOG and color name features, are fused via a weighting strategy. Moreover, an occlusion detection method is presented according to the response function of the fused features. Experimental results on several challenging sequences demonstrate the effectiveness and feasibility of the proposed method.","PeriodicalId":173981,"journal":{"name":"2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC.2018.8492748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How to achieve a robust performance remains an intractable problem in the various object tracking algorithms due to some unfavorable factors, e.g. occlusions, appearance change, etc. In this paper, a robust object tracking approach is proposed based on feature fusion and occlusion detection. Under the relevant filtering model, two complementary features, HOG and color name features, are fused via a weighting strategy. Moreover, an occlusion detection method is presented according to the response function of the fused features. Experimental results on several challenging sequences demonstrate the effectiveness and feasibility of the proposed method.
一种基于特征融合和遮挡判断的鲁棒跟踪算法
在各种目标跟踪算法中,由于遮挡、外观变化等不利因素的影响,如何实现鲁棒性一直是一个棘手的问题。本文提出了一种基于特征融合和遮挡检测的鲁棒目标跟踪方法。在相应的过滤模型下,通过加权策略融合HOG和颜色名称两个互补特征。此外,根据融合特征的响应函数,提出了一种遮挡检测方法。实验结果表明了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信