Deep Learning Patch-Based Approach for Hyperspectral Image Classification

Papia F. Rozario, E. Ruehmann, T. Pham, Tianqi Sun, Jacob Jensen, Hengrui Jia, Zhongyue Yu, Rahul Gomes
{"title":"Deep Learning Patch-Based Approach for Hyperspectral Image Classification","authors":"Papia F. Rozario, E. Ruehmann, T. Pham, Tianqi Sun, Jacob Jensen, Hengrui Jia, Zhongyue Yu, Rahul Gomes","doi":"10.1109/eIT57321.2023.10187387","DOIUrl":null,"url":null,"abstract":"Classification of hyperspectral images is an important step of image interpretation from high spatial resolution imagery. Different studies demonstrate that spatial features can provide complementary information for increasing the accuracy of hyperspectral image classification. In this study, we evaluate different methods of spectral-spatial classification of hyperspectral images that are based on denoising methods using convolutional autoencoders. The resulting high-dimensional vectors of spectral features are classified by supervised algorithms such as support vector machine (SVM), maximum likelihood (ML), and random forest (RF). The experiments are performed on several widely known hyperspectral images that reveal a patch-based 3D convolutional autoencoder is more effective in reducing noise in the dataset and retaining spectral-spatial information. Random Forest classifier provides the highest classification accuracy across all the models.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classification of hyperspectral images is an important step of image interpretation from high spatial resolution imagery. Different studies demonstrate that spatial features can provide complementary information for increasing the accuracy of hyperspectral image classification. In this study, we evaluate different methods of spectral-spatial classification of hyperspectral images that are based on denoising methods using convolutional autoencoders. The resulting high-dimensional vectors of spectral features are classified by supervised algorithms such as support vector machine (SVM), maximum likelihood (ML), and random forest (RF). The experiments are performed on several widely known hyperspectral images that reveal a patch-based 3D convolutional autoencoder is more effective in reducing noise in the dataset and retaining spectral-spatial information. Random Forest classifier provides the highest classification accuracy across all the models.
基于深度学习补丁的高光谱图像分类方法
高光谱图像的分类是高空间分辨率图像解译的重要步骤。不同的研究表明,空间特征可以为提高高光谱图像分类精度提供补充信息。在本研究中,我们评估了基于卷积自编码器去噪方法的高光谱图像的不同光谱空间分类方法。得到的光谱特征的高维向量通过支持向量机(SVM)、最大似然(ML)和随机森林(RF)等监督算法进行分类。在几张众所周知的高光谱图像上进行的实验表明,基于补丁的3D卷积自编码器在降低数据集中的噪声和保留光谱空间信息方面更有效。随机森林分类器在所有模型中提供最高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信