Keynote Talk 1: Bacteria Classification by Small-Scale Deep Learning

K. Ishibashi
{"title":"Keynote Talk 1: Bacteria Classification by Small-Scale Deep Learning","authors":"K. Ishibashi","doi":"10.1109/nics56915.2022.10013377","DOIUrl":null,"url":null,"abstract":"Early classification of bacteria obtained from infected patients is of great importance for making a definitive diagnosis of patients and providing appropriate treatment. We have tried to classify bacteria using deep learning AI. We developed small-scale Depth-Wise Separable Convolutional Neural Networks (DCNNs). The layer structures of the DCNNs is much simpler than conventional Neural Networks (NN) structures. It has only 5 neuron layers, thereby reducing size of the NNs to 3.23 M parameters and 40.02 M MACs . The accuracy to classify bacteria was tested using DIBaS bacterial image dataset, and we have obtained accuracy of 96.28%","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nics56915.2022.10013377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early classification of bacteria obtained from infected patients is of great importance for making a definitive diagnosis of patients and providing appropriate treatment. We have tried to classify bacteria using deep learning AI. We developed small-scale Depth-Wise Separable Convolutional Neural Networks (DCNNs). The layer structures of the DCNNs is much simpler than conventional Neural Networks (NN) structures. It has only 5 neuron layers, thereby reducing size of the NNs to 3.23 M parameters and 40.02 M MACs . The accuracy to classify bacteria was tested using DIBaS bacterial image dataset, and we have obtained accuracy of 96.28%
主题演讲1:细菌分类的小规模深度学习
从感染患者身上获得的细菌早期分类对于做出明确的诊断和提供适当的治疗非常重要。我们尝试使用深度学习人工智能对细菌进行分类。我们开发了小规模深度可分离卷积神经网络(DCNNs)。DCNNs的层结构比传统的神经网络(NN)结构简单得多。它只有5个神经元层,从而将神经网络的大小减少到3.23 M个参数和40.02 M个mac。利用DIBaS细菌图像数据集对细菌进行分类,准确率达到96.28%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信