A. Nikolakopoulos, Dimitris Berberidis, G. Karypis, G. Giannakis
{"title":"Personalized diffusions for top-n recommendation","authors":"A. Nikolakopoulos, Dimitris Berberidis, G. Karypis, G. Giannakis","doi":"10.1145/3298689.3346985","DOIUrl":null,"url":null,"abstract":"This paper introduces PerDif; a novel framework for learning personalized diffusions over item-to-item graphs for top-n recommendation. PerDif learns the teleportation probabilities of a time-inhomogeneous random walk with restarts capturing a user-specific underlying item exploration process. Such an approach can lead to significant improvements in recommendation accuracy, while also providing useful information about the users in the system. Per-user fitting can be performed in parallel and very efficiently even in large-scale settings. A comprehensive set of experiments on real-world datasets demonstrate the scalability as well as the qualitative merits of the proposed framework. PerDif achieves high recommendation accuracy, outperforming state-of-the-art competing approaches---including several recently proposed methods relying on deep neural networks.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This paper introduces PerDif; a novel framework for learning personalized diffusions over item-to-item graphs for top-n recommendation. PerDif learns the teleportation probabilities of a time-inhomogeneous random walk with restarts capturing a user-specific underlying item exploration process. Such an approach can lead to significant improvements in recommendation accuracy, while also providing useful information about the users in the system. Per-user fitting can be performed in parallel and very efficiently even in large-scale settings. A comprehensive set of experiments on real-world datasets demonstrate the scalability as well as the qualitative merits of the proposed framework. PerDif achieves high recommendation accuracy, outperforming state-of-the-art competing approaches---including several recently proposed methods relying on deep neural networks.