SLEMI

Shafiul Azam Chowdhury, S. L. Shrestha, Taylor T. Johnson, Christoph Csallner
{"title":"SLEMI","authors":"Shafiul Azam Chowdhury, S. L. Shrestha, Taylor T. Johnson, Christoph Csallner","doi":"10.1145/3377811.3380381","DOIUrl":null,"url":null,"abstract":"Finding bugs in commercial cyber-physical system development tools (or “model-based design” tools) such as MathWorks's Simulink is important in practice, as these tools are widely used to generate embedded code that gets deployed in safety-critical applications such as cars and planes. Equivalence Modulo Input (EMI) based mutation is a new twist on differential testing that promises lower use of computational resources and has already been successful at finding bugs in compilers for procedural languages. To provide EMI-based mutation for differential testing of cyber-physical system (CPS) development tools, this paper develops several novel mutation techniques. These techniques deal with CPS language features that are not found in procedural languages, such as an explicit notion of execution time and zombie code, which combines properties of live and dead procedural code. In our experiments the most closely related work (SLforge) found two bugs in the Simulink tool. In comparison, SLEMI found a super-set of issues, including 9 confirmed as bugs by MathWorks Support.","PeriodicalId":421517,"journal":{"name":"Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377811.3380381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Finding bugs in commercial cyber-physical system development tools (or “model-based design” tools) such as MathWorks's Simulink is important in practice, as these tools are widely used to generate embedded code that gets deployed in safety-critical applications such as cars and planes. Equivalence Modulo Input (EMI) based mutation is a new twist on differential testing that promises lower use of computational resources and has already been successful at finding bugs in compilers for procedural languages. To provide EMI-based mutation for differential testing of cyber-physical system (CPS) development tools, this paper develops several novel mutation techniques. These techniques deal with CPS language features that are not found in procedural languages, such as an explicit notion of execution time and zombie code, which combines properties of live and dead procedural code. In our experiments the most closely related work (SLforge) found two bugs in the Simulink tool. In comparison, SLEMI found a super-set of issues, including 9 confirmed as bugs by MathWorks Support.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信