Non-contact chronic wound analysis using deep learning

Sawrawit Chairat, Tulaya Dissaneewate, Piyanun Wangkulangkul, Laliphat Kongpanichakul, Sitthichok Chaichulee
{"title":"Non-contact chronic wound analysis using deep learning","authors":"Sawrawit Chairat, Tulaya Dissaneewate, Piyanun Wangkulangkul, Laliphat Kongpanichakul, Sitthichok Chaichulee","doi":"10.1109/BMEiCON53485.2021.9745246","DOIUrl":null,"url":null,"abstract":"The management of chronic wounds requires an analysis of the causative factors, an initial assessment of the wound, and the continuous monitoring of the wound. Wound specialists rely on images for diagnosis and treatment. Objective wound measurements are essential for the effective management of the wound. In this study, we applied deep learning algorithms to segment wound area from 2D images. We employed the public WoundsDB dataset, which contains wound images of 47 patients. Using the U-Net architecture with the EfficientNet-B2 encoder, we achieved an average IOU of 0.8674. Our study provides a step towards the automated analysis of wound that could help physicians to measure and track the progression of wound treatment in the clinic.","PeriodicalId":380002,"journal":{"name":"2021 13th Biomedical Engineering International Conference (BMEiCON)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON53485.2021.9745246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The management of chronic wounds requires an analysis of the causative factors, an initial assessment of the wound, and the continuous monitoring of the wound. Wound specialists rely on images for diagnosis and treatment. Objective wound measurements are essential for the effective management of the wound. In this study, we applied deep learning algorithms to segment wound area from 2D images. We employed the public WoundsDB dataset, which contains wound images of 47 patients. Using the U-Net architecture with the EfficientNet-B2 encoder, we achieved an average IOU of 0.8674. Our study provides a step towards the automated analysis of wound that could help physicians to measure and track the progression of wound treatment in the clinic.
使用深度学习的非接触慢性伤口分析
慢性伤口的处理需要分析致病因素,对伤口进行初步评估,并对伤口进行持续监测。伤口专家依靠图像进行诊断和治疗。客观的伤口测量是有效处理伤口的必要条件。在这项研究中,我们应用深度学习算法从二维图像中分割伤口区域。我们使用了公共的WoundsDB数据集,其中包含47名患者的伤口图像。使用U-Net架构和EfficientNet-B2编码器,我们实现了0.8674的平均IOU。我们的研究为伤口的自动分析提供了一步,可以帮助医生在临床中测量和跟踪伤口治疗的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信